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ABSTRACT: Recent advances in computational power and
algorithms have enabled molecular dynamics (MD) simulations
to reach greater time scales. However, for observing conformational
transitions associated with biomolecular processes, MD simulations
still have limitations. Several enhanced sampling techniques seek to
address this challenge, including the weighted ensemble (WE)
method, which samples transitions between metastable states using
many weighted trajectories to estimate kinetic rate constants.
However, initial sampling of the potential energy surface has a
significant impact on the performance of WE, i.e., convergence and
efficiency. We therefore introduce deep-learned kinetic modeling
approaches that extract statistically relevant information from short
MD trajectories to provide a well-sampled initial state distribution
for WE simulations. This hybrid approach overcomes any statistical bias to the system, as it runs short unbiased MD trajectories and
identifies meaningful metastable states of the system. It is shown to provide a more refined free energy landscape closer to the steady
state that could efficiently sample kinetic properties such as rate constants.

1. INTRODUCTION
Molecular dynamics (MD) simulations have found their
applications in science and engineering, such as chemistry
and biochemistry, statistical mechanics, condensed matter
physics, and materials science.1−10 In recent years, MD
simulations have significantly impacted the study of complex
biological processes such as protein folding, drug discovery,
receptor−ligand binding and unbinding, protein−membrane
interactions, and protein−protein interactions. MD simulations
can effectively analyze key mechanistic insights into highly
complex dynamics of biological systems of interest in atomistic
detail.11−18 However, the task of estimating the kinetics and
thermodynamics of such systems comes with its own set of
challenges.
Existing classical force fields are sometimes insufficient to

estimate specific properties of interest, such as polarization and
charge delocalization effects for complex biological sys-
tems.19−21 Time steps for MD simulations are restricted to
the femtosecond range to correctly integrate the equations of
motion, as they cannot exceed the time period of the highest-
frequency thermal oscillation. Biologically relevant systems
undergo complex conformational transitions, which are
essential to their functions. It is challenging to capture these
transitions through conventional MD, especially if they are
relatively slow processes (milliseconds or longer), involve
large-scale conformational rearrangements, or include protein
association and/or (re)folding. We resort to computationally

expensive long-scale MD simulations to observe such
transitions or “rare events”.22−24

Several enhanced sampling methods have been developed to
overcome the difference in time scales of conventional MD
simulations compared to the time scales of biological
processes.25−29 One category of enhanced sampling methods
adds a bias potential to the potential energy surface (PES) that
decreases the energy barrier of transition between metastable
states and accelerates the conformational search. We could
roughly categorize these methods as collective variable (CV)-
based and CV-free enhanced sampling methods. CV-based
enhanced sampling approaches include but are not limited to
metadynamics (metaD),30,31 variationally enhanced sam-
pling,32 and Markov state models (MSMs),33,34 while CV-
free enhanced sampling methods include parallel tempering or
replica exchange molecular dynamics (REMD),35,36 selective
integrated tempering, and Gaussian accelerated molecular
dynamics (GaMD).37 All of the previously mentioned
enhanced sampling approaches are capable of accelerated
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PES conformational search. Thereby, they prove to be effective
in extensive thermodynamic sampling. On the contrary, such
enhanced sampling approaches add a bias potential to the
system’s potential energy and thereby lead to altered dynamics.
Extracting kinetic and mechanistic insights is often subjected to
assumptions such as low residence times in the transition state
regions, quasistationarity characteristics of metaD, construc-
tion of a master equation for non-Arrhenius and multistate
kinetics, and usage of Kramers’ rate theory in the overdamped
regime.38−42

On the other hand, several path sampling methods exist for
an extensive sampling of kinetic properties, which are broadly
divided into complete path sampling and segment-based
sampling. Transition path sampling (TPS) and dynamic
importance sampling (DIMS) are based on complete reactant
to product path sampling. Segment-based sampling approaches
are based on splitting the reactant to product path into several
segments or “bins” where bin-to-bin transitions are sampled by
running independent MD simulations of fixed duration within
these bins. These methods include but are not limited to
weighted ensemble (WE) methodology,43 milestoning ap-
proaches,44−46 adaptive multilevel splitting (AMS),47−49 and
transition interface sampling (TIS).50 These path sampling
methods typically focus on sampling the transition regions, and
thereby, an entire PES of the system is often neglected. The
WE method enhances the sampling of rare events by running
independent and unbiased parallel simulations in short
configurational spaces or “bins”. These simulations communi-
cate with each other through replication and resampling,
leading to the precise estimation of kinetic observables. The
WE method is further explained in section 2.2.
Our recent work demonstrated the effectiveness of a hybrid

enhanced sampling method, the GaMD-WE method, which
combines GaMD and WE for an extensive sampling of both
the thermodynamics and kinetics of biological systems of
interest.51 GaMD is performed initially to sample the PES of
the system by applying several boost potentials and is followed
by reweighting to recover the original PES. Configurations
selected from the recovered PES are the starting structures for
the WE simulations. Several independent boost potentials are
applied in parallel GaMD simulations and are reweighted
accordingly to recover the PES of the system. The GaMD run
with the most PES coverage provides the starting structures for
WE simulations. We aim to further decrease the computational
cost of thermodynamic and kinetic sampling of systems of
interest by running unbiased MD simulations and implement-
ing deep learning with the Markovian variational approach for
faster and enhanced hybrid sampling.52,53 This way, we can
bypass the entire reweighting process to recover the original
PES.
Providing a well-sampled initial state distribution to WE

simulations is often a concern. Generally, multiple starting
structures are provided at the beginning of a simulation, and
they often fail to establish extensive communication with each
other, thereby leading to an initial bias in the simulation.
MSMs have proved to be successful in generating equilibrium
distributions, thereby removing the initial bias in the
simulations.54 The history-augmented Markov state model
(haMSM) is another efficient method for the removal of bias
in stationary distributions, and it has been implemented
recently in WE simulations, where a steady-state analysis is
performed, and the weights are distributed accordingly to
restart the simulation.55 In short, DeepWEST is an attempt to

construct MSMs from short MD simulations, providing a well-
sampled initial distribution for the WE simulations. We
propose a hybrid method that uses the variational approach
for Markov processes (VAMP) and neural networks to identify
metastable states from unbiased and short MD simulations as a
precursor for running WE simulations. Selected conformations
from these states then serve as starting structures for WE
simulations to further sample the kinetics and thermodynamics
of the system. This hybrid methodology further reduces the
computational cost compared to our previously developed
hybrid GaMD-WE method, accelerates the WE approach
further by providing well-sampled initial configurations, and
provides a better comprehensive picture of the thermodynamic
and kinetic properties of the systems of interest by introducing
no statistical bias into the free energy landscape of the system.
In the forthcoming sections, we will describe the WE method,
the VAMP approach, and the hybrid method in detail. We will
also demonstrate the capability of the DeepWEST approach to
sample kinetic and thermodynamic properties faster than the
WE method alone and compare the findings with those of the
already established GaMD-WE approach.

2. METHODS
2.1. Variational Approaches for Markovian Processes.

Markovian processes are stochastic processes where the future
state of the system, xt+τ, depends only on the current state, xt,
where t is the time step and τ is the lag time. Various Markov
modeling approaches have been developed recently to extract
key information for complex dynamical processes. These
methods include but are not limited to Markov state models
(MSMs),56−58 Markov transition models, variational approach
to conformational dynamics (VAC),59 time-lagged independ-
ent component analysis (TICA),60 variational diffusion
maps,61,62 and variational approach for Markov processes
(VAMP).52,63 Dynamical systems often display high non-
linearity in their system coordinates. To analyze nonlinear and
high-dimensional dynamical systems, we employ the Koopman
operator, , that linearly transforms the vector space spanned
by observables in the form of time-series data generated by
MD simulations. This facilitates the prediction and estimation
of nonlinear dynamical properties through the traditional
methods employed for linear dynamical systems.64−66 A
majority of the Markovian modeling approaches exploit the
fact that there exists a nonlinear transformation of these
features such that the dynamics can be approximated as a
linear Markov model.67,68 Let χ0 and χ1 be the feature
transformations for the trajectory coordinates xt and xt+τ
respectively, and be the expectation value such that the
matrix determines the dynamics of the system according to
eq 1:

[ ] [ ]+x x( ) ( )t t1
T

0 (1)

According to the VAMP theory, when the subspaces spanned
by the features, χ0 and χ1, are identical to the top left and top
right singular functions of , we obtain the best finite-
dimensional linear model.

To generate well-sampled initial conformations for WE
simulations, we resort to a neural network architecture that
employs VAMP, known as VAMPnets, which is a nonbiased
trajectory learning approach towards faster estimation of
kinetics and thermodynamics of systems of interest compared
to other hybrid approaches.69 MD data analysis is primarily
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performed in subsequent steps of featurization, dimension
reduction, discretization, and coarse-graining.70−73 Featuriza-
tion is the process where the simulation data are often
subjected to the removal of translational and rotational motion
and/or transformed into internal coordinates. Featurization
follows a dimensionality reduction where high-dimensional
trajectory data are reduced to slow collective variables.74−76

However, initial steps of featurization, such as choosing
appropriate metrics for training the trajectory dataset such as
using Cartesian coordinates or internal coordinates, selecting
suitable CVs that describe the conformation space such as
dihedral angle root-mean-square deviation (RMSD), radius of
gyration, removal of solvent coordinates, selection of heavy
atoms, and realignment, are to be determined before training
the trajectory using VAMPnets. The resultant metric space is
then discretized to fewer states, and the process is called
discretization.71,77,78 Finally, coarse-graining of the MSM is
performed since the internal dynamics of a particular set of
microstates can be faster than the modeling time scale.79,80 All
of the above steps involved in the process of generating MSMs
are performed by VAMPNets that learn the nonlinear
collective variables or reaction coordinates that separate the
metastable states of biological systems.
A simple VAMPnets model comprises two parallel neural

network architectures that are employed to learn feature
transformations using the VAMP approach. Each network
receives the initial MD trajectory coordinates, xt, and time-
lagged correspondent of the same coordinates, xt+τ. Nonlinear
dimensionality reduction is then performed on these two sets
of trajectory inputs for each time step, t. As per the VAMP
principle, a VAMP-2 score is defined that attains its maximum
value when the top left and top right components of the
Koopman operator are equivalent to the subspaces spanned
by these features.52 Deployed neural networks are trained to
maximize the VAMP-2 score in order to achieve the best finite-
dimensional linear model. In the above process, it achieves the
segregation of the trajectory frames and assigns them to
particular clusters or Markov states, which then accelerates the
process of rare-event sampling and transition state analysis.
Key features for VAMPnets include the choice of the lag time,
the number of output nodes, and the network depth of the
architecture. A few preoptimization runs with varying lag times
are performed on the simulation trajectory to find the lag time
that could resolve the slowest processes. The choice of a lag
time relies upon the eigenvalue decomposition of the Markov
propagators. When selecting a large lag time that exceeds the
time scale of the slowest processes, it becomes difficult to fit
the noisy data. However, a short lag time leads to them getting
stuck in one of the suboptimal maxima of the training score.
The selection of output nodes represent the separable
metastable regions from the trajectory data. A higher number
of output nodes may not be suitable for small amounts of
trajectory data since the clustering will lead to discretization of
the transition regions. The clustering of metastable states also
depends heavily on the network depth of the architecture. A
deeper network describes complex functions and is more
difficult to train.
2.2. Weighted Ensemble Method. Standard unbiased

MD simulations are limited by the time scale and infrequency
of significant biological events. Such events are rarely captured
in the trajectory data, and it becomes challenging to analyze
further and estimate the kinetics of such transitions. The
weighted ensemble simulation approach is an enhanced

sampling method designed to sample such rare occurrences
or transitions such as protein−protein association reactions
and conformational changes by replicating and resampling an
ensemble of weighted trajectories.43,81 The whole configura-
tional space is subdivided into macrostates or “bins” that
sequentially lead the system from an initial state to the target
state. Many short simulations or “walkers” carrying proba-
bilities or “weights” are run, and the system evolves throughout
the simulation through “resampling” that ensures an equal
number of trajectories in each bin, i.e., by splitting or merging
walkers. These walkers explore the configurational space
extensively, eventually sampling rare transitions. Appropriate
progress coordinates are used to define the bin boundaries.
Transitions between these bins are recorded while the system
evolves in time to estimate the kinetics and thermodynamics.
The WE method has been demonstrated to accurately estimate
the kinetics of rare events for multiple biological systems.82,83

Resampling is a crucial component of the WE approach that
leads to the statistically unbiased future evolution of the
system.82,84,85 Walkers are resampled after every iteration via
appropriate replication and reassignment of weights. Weighted
trajectories are initiated from assigned bins and are propagated
for a short interval, τ. These trajectories are either replicated
where there are too few trajectories or deleted where there are
more than the required number of trajectories per bin. Since
there is no statistical bias in the simulation, thermodynamic
and kinetic properties can be directly obtained by evolution of
the weights of the walkers in each bin. Simulation results can
be periodically checked for convergence by estimating rate
constants for various possible transitions between the macro-
states. This approach also eliminates the need for choosing the
resampling time, τ, based on the Markovian property and
thereby provides the flexibility to select τ based on the system
size.

The efficiency of WE simulations is attributed to the weights
of the starting conformations, and long-scale simulations of
multiple short trajectories are required to obtain accurate
kinetic and thermodynamic properties of systems of interest.
The choice of initial starting conformations significantly affects
the accuracy and simulation time, and it can be remarkably
enhanced by providing an intelligently sampled set of initial
starting conformations. The motivation for DeepWEST
originates from this notion and aims at obtaining these
conformations through deep learning approaches using VAMP.
The Weighted Ensemble Simulation Toolkit with Paralleliza-
tion and Analysis (WESTPA) is an open-source package to
perform WE simulations.86 This toolkit is highly interoperable,
is compatible with a wide range of MD engines, and provides
an integrated protocol for efficient storage and analysis of the
estimates generated. Our current work incorporates the
WESTPA package for running WE simulations. Since we are
focused on obtaining the rate constants between multiple
states in these systems, we run equilibrium WE simulations to
sample their kinetic and thermodynamic properties. However,
steady-state WE simulations can be employed for systems
where rate constants between two states are calculated. Such
simulations employ “target state recycling”, i.e., the walkers are
fed into the initial state once they reach the target state.
Steady-state WE simulations with starting states from
equilibrium WE are more commonly used for sampling kinetic
and thermodynamic properties.
2.3. DeepWEST. The deep learning of kinetic models with

the Weighted Ensemble Simulation Toolkit (DeepWEST)
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method aims to provide well-sampled initial distributions to
WE simulations. It is achieved by running a relatively short
MD simulation and processing the trajectory data through the
VAMP approach by employing neural networks. Initial
conformations for WE simulations and their probabilistic
values are extracted from the resultant MSMs. WE simulations
are then run with this distribution, generating a more refined
free energy landscape closer to the steady-state distribution.
We have developed a DeepWEST package that automates the
entire process of running MD simulations for trajectory
analysis, performing deep learning of kinetic models for
generating MSMs through VAMPNets, and producing well-
sampled initial conformations for running WE simulations.
The entire workflow can be described as follows:

1. Systems of interest are downloaded from the Protein
Data Bank (PDB) server and are prepared for MD
simulations using appropriate force field parameters,
periodic box vectors, and solvation using the Amber 14
package.87

2. Once the system is prepared, energy minimization,
simulated heating, and equilibration are performed using
the OpenMM simulation engine.88

3. The MD simulation is then performed using the Amber
simulation engine for the desired amount of simulation
time. Trajectories are saved with the desired frequency.

4. The trajectory data are subjected to featurization,
dimensionality reduction, discretization, and kinetic
modeling using VAMPnets to generate metastable states.

5. VAMPnets deploy a “fuzzy clustering” of MD
trajectories in “n” output states. Each conformation in
the MD trajectory has a probability for each of these
output states that sum to 1. The cluster with the

maximum likelihood for each conformation is the one
that is assigned to the conformation. After clustering,
conformations within each cluster are further binned
based on one of the CVs (dihedral angle, ϕ, in the case
of alanine dipeptide and RMSD in the case of
chignolin). From each subcluster, a certain number of
conformations are selected from each bin to generate a
well-sampled initial state sampling for WE simulations.
Once the conformations are chosen from these clusters,
they are assigned weights based on the fractions of the
population of the clusters to which they belong.

6. A WE simulation folder is created with all of the
required starting structures, weights, and topology files
to run a WE simulation. To avoid any steric clashes
during the initial WE simulations, starting structures are
processed in subsequent steps of minimization of heavy
atoms (N, C, O, and Cα) followed by minimization of
the entire system.

7. WE simulations are then run with the starting structures
with desired probabilities assigned for each conforma-
tion.

As shown in Results, our method estimates the kinetics of
the systems of interest, i.e., alanine dipeptide and chignolin,
more quickly and more accurately than the WE method alone.
Long-scale unbiased MD simulations or brute-force methods
are often used as a reference for evaluating the performances of
new methods on model systems.89 Five independent brute-
force simulations, each 2 μs for alanine dipeptide and 4 μs for
chignolin, were performed to obtain the reference values of
rate constants over aggregate simulation time. DeepWEST
performs equally well and often surpasses the brute-force and
hybrid GAMD-WE approaches with the advantage of being

Figure 1. Model systems tested by the WE, GaMD-WE, and DeepWEST approaches.
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computationally inexpensive and easy to implement while
adding no statistical bias to the system.

3. RESULTS
To demonstrate the effectiveness of the current approach, we
have tested the DeepWEST method on three systems: alanine
dipeptide with explicit solvation (Figure 1a), chignolin with
implicit solvation (Figure 1b), and the NTL9 protein with
implicit solvation (Figure 1c). Kinetics and thermodynamics
obtained from these systems using our DeepWEST approach
are compared with those obtained using WE and our
previously developed hybrid GaMD-WE approach. For the
systems mentioned above, we demonstrate that the Deep-
WEST approach surpasses the WE approach in estimating the
rate constants between the metastable states of interest and
even outperforms the already established hybrid GaMD-WE
approach in many occurrences. We also demonstrate that
DeepWEST samples the free energy landscape equivalently
compared to the already established approaches. Error bars
representing 95% confidence intervals are calculated for all
WE, GaMD-WE, and DeepWEST runs. Simulations are run
until there is no significant change in the average rate constant
or “convergence” is reached. Rate constants are plotted with an
approximate interval of 50 iterations for each run.
3.1. Alanine Dipeptide. Alanine dipeptide has been

commonly used as a model system for testing new
methods.13,51,90−92 It is a 22-atom system with an acetyl
group at the N-terminus and N-methylamide at the C-terminus
(Figure 1a). Initial coordinates for alanine dipeptide were
obtained from http://ftp.imp.fu-berlin.de/pub/cmb-data/
alanine-dipeptide-nowater.pdb. The AMBER ff14SB force
field was used to prepare the system for MD simulations.93

It was then subjected to explicit solvation using the TIP3P
water model.94 Alanine dipeptide was subjected to 50 ns of
unbiased MD simulations. Trajectories were trained using
VAMP neural networks with a time lag of 80 ps, a training ratio
of 0.9, and a batch size of 1000 that learned discretization in
three metastable states. A list of hyperparameters used for
network training is provided in Table 1. Starting structures

were selected from the metastable states as per the DeepWEST
protocol, followed by three independent WE simulations of 12
μs each with a total simulation time of 36 μs. The resampling
time, τ, was identical to that used in the WE and GaMD-WE
runs, i.e., 10 ps.51,82 CVs were set to be the dihedral angles, ϕ
and ψ, which were evenly spaced in bins of 0.17 rad with ϕ and

ψ in the range [−3.14 rad, 3.14 rad]. The target number of
walkers per bin, nw, was set to be 4 for the WE simulation.

To compare the performance of the DeepWEST method
with the WE and hybrid GAMD-WE methods, we have
identified three metastable states in alanine dipeptide as shown
in Figure 2a. Note that Figure 2b shows the three metastable
states when the simulation time was 250 ns. For the
DeepWEST method, we have used the 50 ns simulation time
as an input trajectory to be trained by the network architecture.
The metastable states were chosen in such a way that each
state represents an important region of the PES. These regions
are αR, αL, and PII. αR lies within the α region of the
Ramachandran plot, while PII lies in the β region (Figures 2
and 3). αL lies in the region where ϕ attains positive radian
values. αR is defined as −2.09 rad ≤ ϕ ≤ 0 rad and −1.75 rad
≤ ψ ≤ 0.87 rad, and αL is defined as 0 rad ≤ ϕ ≤ 2.09 rad and
−0.87 rad ≤ ψ ≤ 1.75 rad; PII is defined as −2.09 rad ≤ ϕ ≤ 0
rad and 1.31 rad ≤ ψ ≤ 3.14 rad. VAMPNets demonstrated
success in discretization of the MD trajectory data in three
metastable states separating the α and β regions of the
Ramachandran plot (Figure 2a) and further separating the
conformations with the negative and positive values of the ϕ
angles (Figure 2b).

Two different WE approaches, namely, the conventional WE
approach and the hybrid GaMD-WE approach, were compared
to assess the performance of our newly developed DeepWEST
approach. WE was run for a total simulation time of 36 μs
averaged over three independent runs of 12 μs each. Similarly,
the GaMD-WE approach was run for 50 ns of GaMD followed
by 11.95 μs of WE, totaling a simulation time of 36 μs averaged
over three independent runs of of 12 μs each. Likewise, the
DeepWEST approach was run for an unbiased MD simulation
of 50 ns followed by 11.95 μs of WE simulation, totaling a
simulation time of 36 μs averaged over three independent runs
of 12 μs each. Figure 2 demonstrates the ability of the deep-
learned kinetic modeling approach to cluster the MSMs and
also to ensure that adequate sampling has been achieved to
select starting conformations. The average free energy is given
by −kBT ln P, where kB is the Boltzmann constant, T is the
absolute temperature, and P is the probability. Figure 4a,b
presents the average free energy profiles of alanine dipeptide
for the WE and hybrid GaMD-WE approaches, respectively,
while Figure 4c represents the free energy profile for the
DeepWEST approach. Figure 4c shows almost identical PES
coverages obtained through the DeepWEST approach
compared to WE (Figure 4a) and the hybrid GaMD-WE
approach (Figure 4b). This in turn demonstrates the ability of
the DeepWEST approach to access the entire free energy
landscape of the system with enough sampling in the PII, αL,
and αR (right-handed α-helix) regions. Figure 5 demonstrates
the average free energy profiles of alanine dipeptide from three
separate runs of WE, GaMD-WE, and DeepWEST simulations
at different stages of the simulations.

To explore the performance of the DeepWEST approach in
estimating kinetic rates, brute-force simulations were carried
out to obtain reference values. Three independent 12 μs
simulations were run, and Bayesian bootstrapping was
performed for 95% confidence intervals. Rate constants were
obtained from different methods, i.e., the brute-force
calculations and the WE, GaMD-WE, and DeepWEST
methods, for transitions between metastable regions of interest
(Table 2). For the transitions between the central metastable
region, αR to PII, the DeepWEST method outperformed both

Table 1. Hyperparameters Used in VAMPNets for Alanine
Dipeptide

hyperparameter description value

τ time lag between the two MD trajectory
datasets

80 ps

batch size number of samples in a batch for gradient
descent

1000

train ratio percentage of trajectory points used for
training

0.9

network depth number of hidden layers in the network 8
layer width width of the hidden layer 100
learning rate learning rate used for the ADAM optimizer 1 × 10−4

output size number of metastable states as an output 3
nepochs number of iterations over the training set 100
ϵ threshold for eigenvalues 1 × 10−5
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Figure 2. Three metastable states of alanine dipeptide as an output of VAMPNets (a) separated by α (green) and β (red and blue) regions of the
Ramachandran plot and (b) separated by negative (green and red) and positive (blue) values of ϕ and further separated by α (green) and β (red)
regions of the Ramachandran plot.

Figure 3. Average free energy profiles of alanine dipeptide from three separate 12 μs DeepWEST simulations. Rate constants to be calculated
between the following regions of interest in alanine dipeptide: (a) αR ⇔ αL; (b) PII ⇔ αL; (c) αR ⇔ PII.
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the WE and GaMD-WE methods in estimating the rate
constant. The rate constant for the DeepWEST method
converged faster compared to the brute-force value (Figure
6c). However, as observed in Figure 6d, all of the methods
slightly overestimated the rate constant for the transition from
PII to αR. In the transitions from αL to PII (Figure 6a), PII to αL
(Figure 6b), αR to αL (Figure 6e), and αL to αR (Figure 6f),
comparable convergence and accuracy of the kinetic rates were
observed for the DeepWEST approach compared to the WE
and GaMD-WE methods.
3.2. Chignolin. Chignolin (PDB ID 1UAO), a designed

protein, is a model system consisting of 10 amino acid residues
(GYDPETGTWG) (Figure 1b).95 It forms a stable β-hairpin
structure in implicit solvent, and MD simulations reveal the
slow unfolding of chignolin.96 Initial coordinates for chignolin
were obtained from https://files.rcsb.org/download/1UAO.
pdb. The system was then subjected to generalized Born (GB)
implicit solvation using the model II radii.97−99 The AMBER
ff14SB force field was used to prepare the system for MD
simulations.93 Chignolin was subjected to 100 ns of constant-
volume unbiased MD simulation with a collision frequency of
1 ps−1, employing a Langevin thermostat at a constant

temperature of 300 K. To interpret the kinetics of a system
that demonstrates folding and unfolding behavior, we
encounter the problem of trajectory alignment with respect
to a unique reference structure. Moreover, a large amount of
noise would be introduced while the networks transform the
data via rotations and translations. Hence, for the chignolin
system, internal coordinates were chosen as a network input.
Nearest-neighbor heavy-atom distances between all non-
redundant residues separated by two or more residues served
as the network input, resulting in 28 nodes. MD trajectories
were trained using VAMP neural networks with a time lag of
40 ps, a training ratio of 0.9, and a batch size of 1000 that
learned discretization in three metastable states by performing
a hierarchical decomposition of the state space. A list of
hyperparameters used for network training is provided in Table
3. Starting structures were selected from the metastable states
as per the DeepWEST protocol, followed by three independent
WE simulations of 40 μs each with a total simulation time of
120 μs. The resampling time, τ, was identical to that used in
the WE and GaMD-WE runs, i.e., 20 ps.51 CVs for WE
simulations were set to be mass-weighted RMSD and mass-
weighted radius of gyration (Rg), respectively. Both CVs were

Figure 4. Average free energy profiles of alanine dipeptide from three separate 12 μs runs of (a) WE, (b) GaMD-WE, and (c) DeepWEST
simulations.
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evenly spaced in bins of 0.02 nm in the range [0 nm, 1 nm].
The target number of walkers per bin, nw, was set to 4 for the
WE simulation.
To compare the performance of the DeepWEST method

with the hybrid GaMD-WE and WE methods, we have
identified three metastable states in chignolin as shown in
Figure 7. These regions are folded, unfolded, intermediate I
(I1), and intermediate II (I2). The folded region is defined as
RMSD ≤ 0.20 nm, while the unfolded region is defined as
RMSD ≥ 0.55 nm. I1 is defined to be 0.20 nm ≤ RMSD ≤ 0.30

nm and 0.425 nm ≤ Rg ≤ 0.525 nm, while I2 is defined to be
0.60 nm ≤ RMSD ≤ 0.70 nm and 0.70 nm ≤ Rg ≤ 0.80 nm.

Chignolin represents a common protein structural motif that
undergoes folding and unfolding during brute-force MD
simulations. We tested the DeepWEST method by estimating
rate constants between regions of interest, especially in the
folded and unfolded regions. WE was run for a total simulation
time of 120 μs averaged over three independent runs of 40 μs
each. Similarly, for the GaMD-WE approach, six independent
500 ns runs of GaMD were performed with varying boost

Figure 5. Average free energy profiles of alanine dipeptide from three separate runs of WE, GaMD-WE, and DeepWEST simulations at different
stages of the simulations.

Table 2. Rate Constants (in ns−1) between Different Metastable States of Alanine Dipeptide Obtained after 12 μs of Aggregate
Simulation Time

transition brute-forcea WEb GaMD-WEb DeepWESTb

αL → PII 0.335 [0.275, 0.408] 0.325 ± 0.022 0.328 ± 0.012 0.336 ± 0.015
PII → αL 0.01 [0.008, 0.012] 0.009 ± 0.002 0.008 ± 0.001 0.009 ± 0.001
αR → PII 6.812 [6.723, 6.897] 6.971 ± 0.046 6.737 ± 0.037 6.788 ± 0.155
PII → αR 2.823 [2.777, 2.868] 3.012 ± 0.052 2.941 ± 0.042 2.975 ± 0.024
αR → αL 0.01 [0.008, 0.012] 0.009 ± 0.002 0.008 ± 0.002 0.009 ± 0.001
αL → αR 0.305 [0.254, 0.367] 0.375 ± 0.27 0.325 ± 0.073 0.445 ± 0.427

aIn the case of the brute-force simulation, the first value indicates the average rate constant, and the values within the brackets indicate the 95%
confidence interval computed using Bayesian bootstrapping. bFor the WE, GaMD-WE, and DeepWEST methods, the error bars represent 95%
confidence intervals obtained from the standard deviations of three independent runs.
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potentials, and starting conformations were selected from the
GaMD run that had the largest PES coverage. It was then
followed by 39.50 μs of WE simulations, totaling a simulation
time of 120 μs averaged over three independent runs of 40 μs
each. Likewise, for the DeepWEST approach, an unbiased MD
simulation of 100 ns was run, followed by 39.90 μs of WE
simulation, totaling a simulation time of 120 μs averaged over

three independent runs of 40 μs each. Figure 8 demonstrates
the ability of the deep-learned kinetic modeling approach to
cluster the MSMs for chignolin. Initial conformations were
selected from these metastable states for WE simulations.
Figure 9a,b presents the average free energy profiles of
chignolin from the WE and hybrid GaMD-WE approaches,
respectively, while Figure 9c presents the free energy profile

Figure 6. Evolution of rate constants over aggregate simulation time for the brute-force simulation (black), WE simulations (red), the GAMD-WE
approach (blue), and the DeepWEST approach (green). For the WE, GaMD-WE, and DeepWEST methods, the error bars represent 95%
confidence intervals obtained from the standard deviations of three independent runs.
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from the DeepWEST approach. Figure 10 demonstrates the
average free energy profiles of chignolin from three separate
runs of WE, GaMD-WE, and DeepWEST simulations at
different stages of the simulations. The PES coverages for
chignolin from the three approaches are comparable,
demonstrating that the DeepWEST method can sample the
thermodynamics of the system accurately.

To assess the performance of the DeepWEST approach with
respect to WE and the hybrid GaMD-WE approach, we
estimated the convergence of rate constants between
metastable states, especially defined within folded and
unfolded regions of chignolin (Table 4). The two intermediate
regions, I1 and I2, are separated apart in the PES, and
convergence of rate constants between these regions is difficult
to achieve. Figure 11c demonstrates faster and more accurate
convergence of the DeepWEST approach compared to the WE
and GaMD-WE approaches for the transition from I1 to I2.
However, the GaMD-WE method outperformed the Deep-
WEST method in estimating the rate constant for the
transition from I2 to I1 (Figure 11d). The DeepWEST method
showed faster convergence and greater accuracy in estimating
the rate constants between I2 and the folded state (Figure
11e,f). Faster convergence for the DeepWEST method was
also observed for the rate constant from the folded state to the
unfolded state (Figure 11a). However, the GaMD-WE and
DeepWEST methods equally outperformed the WE method in
estimating the rate constant in the transition from the unfolded
state to the folded state (Figure 11b). In conclusion, for all the
cases, both the hybrid methods, especially the DeepWEST
method, outperformed the WE method in achieving faster

Table 3. Hyperparameters Used in VAMPNets for
Chignolin

hyperparameter description value

τ time lag between the two MD trajectory
datasets

40 ps

batch size number of samples in a batch for gradient
descent

1000

train ratio percentage of trajectory points used for
training

0.9

network depth number of hidden layers in the network 6
layer width width of the hidden layer 100
learning rate learning rate used for the ADAM optimizer 1 × 10−4

output size number of metastable states as an output 3
nepochs number of iterations over the training set 100
ϵ threshold for eigenvalues 1 × 10−5

Figure 7. Average free energy profiles of chignolin from three separate 40 μs runs of DeepWEST simulations. Rate constants to be calculated
between the following regions of interest in chignolin: (a) folded ⇔ unfolded; (b) I1 ⇔ I2; (c) folded ⇔ I2.
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Figure 8. Three metastable states of chignolin as an output of VAMPNets. The upper panels show the mean contact maps for the metastable states,
and the lower panels show the 3D representations of the states.

Figure 9. Average free energy profiles of chignolin from three separate 40 μs runs of (a) WE, (b) GaMD-WE, and (c) DeepWEST simulations.
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convergence and accuracy of rate constants between the
metastable regions of interest.
3.3. NTL9. To further test the capabilities of the

DeepWEST method for a higher-dimensional problem, we
chose the N-terminal domain of ribosomal protein L9
(NTL9). The NTL9 protein is a 627-atom system consisting
of 39 amino acid residues (Figure 1c) that has a folding time of
∼1.5 ms.100 Initial coordinates for the unfolded NTL9 protein
were obtained from https://github.com/westpa/westpa2_
tutorials/blob/main/tutorial-3.3/istates/ntl9.pdb. The system
was then subjected to GB implicit solvation using the model II

radii.97−99 The AMBER ff19SB force field was used to prepare
the system for MD simulations.101 The NTL9 protein was then
subjected to 10 μs of constant-volume unbiased MD
simulation with a collision frequency of 1 ps−1, employing a
Langevin thermostat at a constant temperature of 300 K. To
follow the folding and unfolding behavior of the NTL9 system,
internal coordinates were chosen as a network input. Nearest-
neighbor heavy-atom distances between all nonredundant
residues separated by two or more residues served as the
network input, resulting in 666 nodes. MD trajectories were
trained using VAMP neural networks with a time lag of 60 ns, a

Figure 10. Average free energy profiles of chignolin from three separate runs of WE, GaMD-WE, and DeepWEST simulations at different stages of
the simulations.

Table 4. Rate Constants (in ns−1) between Different Metastable States for Chignolin Obtained after 40 μs of Aggregate
Simulation Time

transition brute-forcea WEb GaMD-WEb DeepWESTb

folded → unfolded 1.016 [0.983, 1.05] 0.873 ± 0.036 1.044 ± 0.017 0.998 ± 0.049
unfolded → folded 0.144 [0.137, 0.15] 0.159 ± 0.002 0.148 ± 0.003 0.149 ± 0.013
I1 → I2 0.513 [0.501, 0.526] 0.515 ± 0.009 0.509 ± 0.017 0.513 ± 0.018
I2 → I1 0.316 [0.307, 0.325] 0.327 ± 0.012 0.325 ± 0.015 0.324 ± 0.007
I2 → folded 0.134 [0.127, 0.14] 0.145 ± 0.003 0.135 ± 0.005 0.136 ± 0.011
folded → I2 0.519 [0.502, 0.536] 0.49 ± 0.009 0.506 ± 0.016 0.511 ± 0.015

aIn the case of brute-force simulation, the first value indicates the average rate constant, and the values within the brackets indicate the 95%
confidence interval computed using Bayesian bootstrapping. bFor the WE, GaMD-WE, and DeepWEST methods, the error bars represent 95%
confidence intervals obtained from the standard deviations of three independent runs.
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training ratio of 0.9, and a batch size of 1000 that learned
discretization in three metastable states by performing a
hierarchical decomposition of the state space (Figure 12).
Starting structures were selected from the metastable states as
per the DeepWEST protocol followed by the WE simulation of
90 μs with a resampling time, τ, of 40 ps. Therefore, the total

simulation time for the DeepWEST method was 120 μs. CVs
for WE simulations were set to be mass-weighted RMSD and
mass-weighted Rg, respectively. Both CVs were evenly spaced
in bins of 0.05 nm in the range [0 nm, 2 nm]. The target
number of walkers per bin, nw, was set to 8 for the WE
simulation. Similarly, the conventional WE simulation was run

Figure 11. Evolution of rate constants over aggregate simulation time for the brute-force simulation (black), WE simulations (red), the GaMD-WE
approach (blue), and the DeepWEST approach (green). For the WE, GaMD-WE, and DeepWEST methods, the error bars represent 95%
confidence intervals obtained from the standard deviations of three independent runs.
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for 130 μs with the same parameters (i.e., resampling time,
CVs, and binning parameters) as described previously for the
DeepWEST simulation. The WE simulations were initiated
from the unfolded state to the folded state, with the CVs set to
be the mass-weighted RMSD and mass-weighted Rg,
respectively. Since the reference structure for computing the
RMSD is the initial unfolded state, the RMSD is expected to
increase during the simulation as the system folds. The
unfolded region is defined as RMSD ≤ 0.60 nm, while the
unfolded region is defined as RMSD ≥ 1.0 nm.
For the same amount of simulation time, i.e., 130 μs, the

DeepWEST method proved to be more effective than the
conventional WE approach in covering the free energy
landscape of a more complex protein, i.e., the NTL9 system.
Figure 13a,b present the free energy landscapes for the NTL9
system for the DeepWEST and conventional WE methods,
respectively, where the lowest-energy state was set to zero. It is
evident from Figure 13a that the DeepWEST approach is more

effective than the conventional WE approach in exploring
other metastable states in the NTL9 system, particularly in the
unfolded region. The rate constants between the unfolded and
folded states were not measured, but we expect the
DeepWEST method to outperform the conventional WE
method in kinetic rate measurements.

4. DISCUSSION
The WE method predominantly depends on appropriate CVs
to sample the system. In most cases, the best choice of CVs is
unknown. In cases where CVs cannot sufficiently describe the
system’s dynamics, hybrid approaches and most enhanced
sampling CV-free approaches may generate a well-sampled
initial configurational space.26,51,102−105 Initial sampling of the
PES has a significant impact on the accuracy and convergence
of WE. Our previously developed hybrid GaMD-WE method
addresses the concern of substantial initial sampling, but
reweighing is an additional concern associated with it. To

Figure 12. Three metastable states of the NTL9 system as an output of VAMPNets. The upper panels show the mean contact maps for the
metastable states, and the lower panels show the 3D representations of the states.

Figure 13. Average free energy profiles of NTL9 from 100 μs runs of (a) DeepWEST and (b) WE simulations.
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obtain the correct PES of the system, GaMD resorts to
reweighing, and a substantial amount of energetic noise is
introduced with an increase in the system size. In that case,
GaMD needs to be run for a longer time scale for varying
degrees of boost potentials, increasing the overall computa-
tional cost drastically. As demonstrated through previous
examples, the newly developed DeepWEST approach is a
powerful method that obtains both the kinetics and
thermodynamics of the system. Compared to our earlier
developed hybrid approach, it is a hassle-free method for
enhanced sampling prior to running WE simulations. First,
DeepWEST eliminates the process of running various
accelerated MD simulations with varying degrees of boost
potentials. Second, it also eliminates the process of PES
reweighting to uncover the original energy landscape by
running unbiased MD simulations. Most importantly, deep
neural architectures learn the clustering of metastable states
from short MD trajectories and can be further processed to
extract starting conformations for WE simulations. Both
methods involved in the DeepWEST approach add no
statistical bias to the system, and thereby, kinetics and
thermodynamics obtained from this approach are exact.
However, a longer MD simulation time may be required to
discretize metastable states as the system size increases to
provide statistically relevant starting conformations for WE
simulations. Recent improvements in the WE method have
been made to achieve faster kinetics.55,104 Even more accurate
and faster kinetics and thermodynamic sampling could be
achieved if DeepWEST were to be combined with these
improvements in WE.
Currently, we have shown the DeepWEST method to work

on simpler systems, i.e., alanine dipeptide in explicit solvation
and chignolin in implicit solvation. We have also shown greater
free energy landscape coverage for the NTL9 protein for the
DeepWEST method against the conventional WE method.
However, extending this method to more complex biological
systems comes with challenges. Deep neural networks learn
feature transformations and cluster trajectories based on input
CVs. The network architecture for such systems primarily
depends on the choice of time lag and the number of
metastable states we want to cluster. Identifying the slowest
processes in complex systems comes with the choice of
accurate CVs, which in most cases is unknown. However,
recent developments in enhanced MD sampling and MSM
approaches would be worth considering. Implementing
multiensemble Markov models (MEMMs) that conduct large
ensembles of even shorter simulations and further accelerate
trajectories by adding boosted potentials through various
accelerated enhanced sampling methods in DeepWEST could
aid the clustering of complex proteins.58,106 Implementation of
hydrogen-mass repartitioning (HMR) for solvated systems to
accelerate the dynamics would prove indispensable in faster
learning of metastable states.27

5. CONCLUSION
A hybrid approach for faster learning of kinetics combining
deep learning of MD trajectories with WE simulations is
presented here. It employs a deep learning architecture to
sample statistically relevant conformations representative of
the rare events from short MD simulation trajectories. The
method is tested on three different model systems, namely,
alanine dipeptide with explicit solvation, chignolin with
implicit solvation, and the NTL9 protein with implicit

solvation. Our method significantly outperforms the WE and
GaMD-WE approaches for the chignolin model system and is
comparable in performance for the alanine dipeptide system.
Because of its reduced simulation time and slighter
sophistication compared to the GaMD-WE approach, Deep-
WEST allows for fast estimation of kinetics with enhanced
coverage. We have also developed an end-to-end package,
DeepWEST, that automates the entire process of running MD
trajectories, extracting statistically relevant conformations using
VAMP theory and neural networks, and preparing the WE
simulation. The DeepWEST package is available at https://
github.com/anandojha/DeepWEST. In conclusion, we have
demonstrated a proof of concept of a hybrid data-driven
approach that can be incorporated into the WE approach to
obtain improved results with significantly less time and
complexities.
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