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ABSTRACT: Gaussian-accelerated molecular dynamics (GaMD) is a well-estab-
lished enhanced sampling method for molecular dynamics simulations that effectively
samples the potential energy landscape of the system by adding a boost potential,
which smoothens the surface and lowers the energy barriers between states. GaMD is
unable to give time-dependent properties such as kinetics directly. On the other hand,
the weighted ensemble (WE) method can efficiently sample transitions between states
with its many weighted trajectories, which directly yield rates and pathways. However,
convergence to equilibrium conditions remains a challenge for the WE method.
Hence, we have developed a hybrid method that combines the two methods, wherein
GaMD is first used to sample the potential energy landscape of the system and WE is
subsequently used to further sample the potential energy landscape and kinetic
properties of interest. We show that the hybrid method can sample both
thermodynamic and kinetic properties more accurately and quickly compared to
using either method alone.

1. INTRODUCTION

Molecular dynamics (MD) simulations are becoming quintes-
sential tools in many fields, including biology,1−3 chemistry,4−7

materials science,8,9 and chemical and biological engineer-
ing.10,11 An increasing number of researchers have used MD
simulations to uncover mechanisms of their biological system of
interest in atomistic detail. Applications of MD simulations
range from studying protein folding3,6,12−14 and protein−
protein or protein−ligand interactions15,16 to computer-aided
drug design (virtual screening and ligand docking).4,5,7

However, MD simulations are not without their challenges.
MD simulations have to be run using femtosecond time steps
due to being limited by the fastest motions in the system. In
contrast, biological processes of interest are on the order of
microseconds or longer. Additionally, systems often get “stuck”
in metastable states and do not change conformations for an
extended period. Hence, MD simulations can be computation-
ally costly when attempting to observe rare events, which is often
the case of interest.
Fortunately, researchers have developed several “enhanced

sampling methods” to overcome this timescale gap betweenMD
simulations and biological processes. Many enhanced sampling
methods work by adding a biasing potential to force the system
away from metastable states. These include but are not limited
to Gaussian-accelerated molecular dynamics (GaMD),17−20

metadynamics,21−25 umbrella sampling,26−29 and adaptive
biasing force (ABF).30−34 Among these, GaMD has the
advantage of not requiring any collective variables (CVs) to

steer the simulation. Rather, it allows unrestrained sampling of
configuration space. Another similar class of methods changes
the system’s temperature instead to sample states difficult to
reach at room temperature, including replica exchange
molecular dynamics (REMD) or parallel tempering.35−39

Although both these classes of methods are effective at obtaining
thermodynamic properties like the free-energy landscape of the
system, they alter the actual kinetics of the system, preventing
them from directly getting kinetic properties from the system.
Note that there are methods to derive kinetic properties like rate
constants from simulations that used these methods. Still, they
need to be obtained either by using Kramers’ rate theory in the
high friction or “overdamping” regime,40 constructing a master
equation,41,42 or assuming a low residence time in the transition
states,43 which are either approximations or are limiting
conditions for these methods to be used for all cases. Moreover,
since the real kinetics of the system is altered, continuous
pathways cannot be obtained from these methods.
As a result, several path-sampling methods focus on sampling

kinetic properties, such as rate constants from the reactant state
to the product state, including milestoning,44−48 forward flux
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sampling,49−52 transition interface sampling,53−56 and others.
These methods divide the path space from the reactant state to
the product state into many interfaces and run many short
simulations to efficiently obtain rate constants and free-energy
landscape of the path space. However, since these methods
primarily focus on sampling the path of interest, the rest of the
free-energy landscape is not extensively sampled. If a more
comprehensive picture of the entire configuration space is
needed along with its thermodynamic and kinetic properties,
then the weighted ensemble (WE) method57−67 can be used on
the system of interest. WE decomposes the configuration space
into small volume elements called “bins” with appropriate CVs
and run many short simulations with probabilities or “weights”
for τ amount of time (“resampling time”) for many iterations to
obtain good statistics. WE has proven to be useful in uncovering
insights into the mechanisms of important biophysical
systems.68−76 However, WE requires a sufficient sampling of
the configuration space by having many initial configurations
with close to steady-state probabilities to get accurate results
quickly.
As a result, we have developed a hybrid enhanced sampling

method that combines GaMD and WE called GaMD−WE.
There also exist hybrid methods that combine REMD and
GaMD77,78 and well-tempered metadynamics and GaMD,79 but
both aim to improve sampling of thermodynamic properties. In
contrast, GaMD−WE aims to enhance sampling of both
thermodynamic and kinetic properties. There is also another
hybrid method called Markovian WE milestoning (M-WEM)80

that combines milestoning and WE and several reweighting
methods for WE81 that also aim to accelerate sampling of both
thermodynamic and kinetic properties. However, M-WEM
cannot generate continuous pathways since WE is used to
accelerate convergence of milestones in milestoning. The
reweighting methods are iterative methods that can be used
additionally for any WE simulation, including GaMD−WE
simulations. In GaMD−WE, GaMD is initially run to sample the
free-energy landscape efficiently with its harmonic boost
potentials. Then, after reweighting is performed to recover the
original free-energy landscape, WE is run with many initial
configurations produced from the GaMD run. This way, the two
methods complement each other and reduce each other’s
limitations. This paper will introduce both methods, the hybrid
method, and the results that demonstrate the hybrid method’s
power to obtain thermodynamic and kinetic properties more
accurately and more quickly than one method by itself.

2. METHODS
2.1. GaMD.GaMD is an enhanced sampling method for MD

simulations that can efficiently sample thermodynamic proper-
ties such as the free-energy landscape of the system. When the
system potential V(r), where r denotes the position vector of an
N-atom system, is lower than the threshold energy E, GaMD fills
the energy wells by adding a harmonic boost potential ΔV(r),
that is

Δ = −V k E Vr r( )
1
2

( ( ))2
(1)

where k denotes the harmonic force constant. If V(r) ≥ E, then
no boost potential is added. There are several criteria that the
boost potential ΔV(r) needs to satisfy for GaMD to work, and
readers can refer to the original GaMD paper17 for specific
details about the boost potential ΔV(r) and the harmonic force
constant k.

If the anharmonicity of the harmonic boost potentialΔV(r) is
small, then ΔV(r) follows a near Gaussian distribution and the
cumulant expansion to the second order can be used to
approximate the exponential average term ⟨eβΔV(r)⟩, where β
denotes the thermodynamic beta or 1/kBT. This exponential
average term ⟨eβΔV(r)⟩ is needed to reweight and recover the
original free-energy landscape from GaMD. Readers can refer to
the original GaMD paper17 for specific details about energetic
reweighting with cumulant expansion to the second order.
A significant advantage of GaMD is that CVs, which describe

the state of a molecular system, are not needed. Identifying the
appropriate CVs for a particular system is still an active area of
research and can be difficult for new or unfamiliar systems.82−84

In contrast, metadynamics requires CVs to be chosen a priori,
which similarly fills energy wells with repulsive Gaussian
potentials. However, metadynamics does not suffer from having
unconverged high-energy regions like GaMD since metady-
namics recovers the original free-energy landscape as the
opposite sum of all Gaussians. Nonetheless, GaMD is one of
the few enhanced sampling methods that does not require
tuning of many parameters and can be easily applied to various
systems. Additionally, GaMD is fully implemented in Amber85

(starting from Amber16) and NAMD86 (starting from 2.13),18

which makes it easier for users to use the method.
2.2. WE Method. The WE method is another enhanced

sampling method for MD simulations that runs many short
simulations instead of one long simulation to sample
thermodynamic and kinetic properties efficiently. These short
simulations or “walkers” carry probabilities or “weights” that
evolve throughout the simulation via “resampling,” a statistical
procedure to maintain a number of these short simulations at
visited regions of the configuration space. More details can be
found in the original WE paper,57 in a review article,58 and in the
Weighted Ensemble Simulation Toolkit with Parallelization and
Analysis (WESTPA) papers,87,88 but the general scheme is as
follows.

1. The following parameters are chosen a priori for the WE
simulation: CVs, resampling time τ for walkers,
partitioning of bins (small volume elements of the
configuration space), and target number of walkers per
bin nw. If there is only one initial state, then there will be nw
walkers, each with a weight of 1/nw. Otherwise, there will
be multiple nw walkers, each with an appropriate weight
that sums up to 1 for the entire system.

2. Walkers are run for τ amount of time and binned to
appropriate bins depending on their CV values.

3. Walkers go through “resampling,” that is, merged or
replicated in a statistically correct way so that the target
number of walkers per bin nw is maintained for each bin.
Each walker ends up with a weight between Pi/nw and 2Pi/
nw where Pi denotes the sum of the weights in bin i.

4. Steps 2 and 3 are repeated until the desired convergence is
reached.

With resampling, the walkers are maintained in each visited
bin regardless of its energy barrier height. Computational cost is
also curtailed since walkers are merged in oversampled, low-
energy regions and replicated in rare, high-energy regions. Since
no statistical bias is added to the system, one can directly obtain
both thermodynamic and kinetic properties of the system from
the evolution of walkers’ weights in each bin.
Although several parameters need to be chosen a priori as

stated in step 1, the resampling time τ can be selected without
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having to worry about fulfilling the Markovian property, a
requirement that other enhanced sampling methods have such
as milestoning. The resampling time τ should be chosen to be
short enough so that WE does not inadvertently miss
transitions.61,76,89 However, since many bins have to reach
convergence to extract correct thermodynamic and kinetic
properties of the system,WE can be computationally costly if the
initial states are not close to the steady state.
In our study, equilibrium WE was used to sample the

thermodynamic and kinetic properties of the system since we
were interested in obtaining rate constants between more than
two states. The rate constants were obtained by defining states
post simulation. If one is interested in obtaining kinetic
properties between two states, however, then steady-state WE
can be used, which “recycles” or feeds back walkers to the initial
state once they reach the target state. This way, WE focuses its
computational effort in sampling the transition of interest in
nonequilibrium steady-state conditions.
2.3. GaMD−WEMethod. The hybrid GaMD−WEmethod

aims to combine strengths and mitigate weaknesses of both
methods. By initially running GaMD to sample the free-energy
landscape of the system, one can obtain a well-sampled initial
state distribution for WE. Then with WE, one can get a more
refined free-energy landscape closer to steady state and sample
kinetic properties such as rate constants from one state to
another state. We show that the hybrid method is significantly
more effective than running a conventional WE to sample
thermodynamic and kinetic properties within the same amount
of simulation time in the subsequent Results section.
We have developed a GaMD−WE package for users to run

GaMD and prepare initial states for WE, specifically for the
WESTPA.87,88 The current package is not fully integrated with
WESTPA, that is, the user needs to use the GaMD−WE package
for the GaMD portion and run aWESTPA simulation separately
for the WE portion using initial states from the GaMD−WE
package, but we plan tomake it fully integrated in the future. The
GaMD−WE package is fully customizable, that is, the desired

force fields, water models, and others can be added, and it
follows a series of scripts as the following.

1. System is prepared for simulation after the Protein Data
Bank (PDB) structure is downloaded from the PDB
server. Appropriate force field parameters are added
followed by system solvation.

2. Solvated system is then minimized, heated, and
equilibrated using the OpenMM90 simulation engine.
Directories are created for the subsequent GaMD
simulations.

3. Six GaMD simulations are run using the Amber85

simulation engine for varying degrees of potential boosts,
that is, lower bound dihedral potential boost, upper
bound dihedral potential boost, lower bound total
potential boost, upper bound total potential boost,
lower bound dual (dihedral + total) potential boost, and
upper bound dual potential boost, which are all of the
possible combinations for potential boosts, for the desired
amount of simulation time.

4. Simulation data are then extracted from the output log
files for each of the six GaMD simulations. Reweighting is
then performed with several reweighting methods, that is,
cumulant expansion to the first order, second order, and
third order, to recover the original free-energy landscape.
Reweighting is done for bins with more than 10 frames.
Then, with the desired target number of walkers per bin
nw, initial structures for WE are saved with appropriate
weights from the reweighted probabilities. If there are
more frames in the chosen bin than the target number of
walkers per bin, then the frames are chosen at random.

5. Initial structures for WE are minimized in two steps (Step
1: Heavy atoms Cα, N, C, and O of the protein are
minimized. Step 2: Entire system including the solvent is
minimized) so that none of them “crash” duringWE. User
can set the minimization steps.

Figure 1. Representative pictures of the systems tested: (a) alanine dipeptide, (b) chignolin, and (c) BPTI.
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6. WE simulation directory is created with proper initial
structures. Number of initial structures can be compared
among the six simulation outputs (see the Supporting
Information). GaMD simulation that yielded the largest
number of initial structures can be subsequently used for
WE simulation since that would indicate the greatest

coverage of the free-energy landscape. All of the initial
structures from GaMD are used for WE. Hence, the
current GaMD−WE implementation is suitable for
equilibriumWE simulations that are focused on sampling
the entire free-energy landscape and rate constants for
regions defined post simulation.

Figure 2.Average free-energy landscape (−kBT ln P, where P denotes probability) of alanine dipeptide after (a) 50 ns of brute force simulations, (b) 50
ns of GaMD (with the upper bound of the dihedral boost potential), and (c) 50 ns of WE. (d,e) show the average free-energy landscape obtained after
12 μs of brute force simulation and WE (after cutting out the first 200 ns of simulation time to eliminate the initial structure bias), respectively. (e)
shows the regions of interest (αR, αL, and PII) marked. The lowest energy state was set to be zero for each free-energy landscape.
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In the subsequent Results section, we show that GaMD has
greater coverage of the free-energy landscape and closer to
steady-state probabilities compared to WE within the same
simulation time. Even if WE has a similar amount of coverage of
the free-energy landscape compared to GaMD for some systems,
GaMD has an advantage over WE with reweighting since
appropriate probabilities or weights can be recovered from the
added biasing potentials. In contrast, sinceWE does not add any

statistical bias to the system, the system needs to evolve naturally
or reach convergence to appropriate probabilities or weights,
which in most cases would take longer than adding a biasing
potential to the system.

3. RESULTS

We have tested our hybrid method on two systems: alanine
dipeptide in explicit solvent and chignolin in implicit solvent.

Figure 3. Evolution of rate constants over aggregate simulation time for WE (in red), GaMD−WE (in blue), and GaMD−WE with equal weights (in
magenta). The reference brute force values are in black. (a,b) show the rate constants between the two major metastable states αR and PII. (c,d) show
the rate constants between αR and αL, a higher-energy region, and (e,f) show the rate constants between PII and αL.
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We show how GaMD−WE outperforms either method in
obtaining thermodynamic and kinetic properties. To further
illustrate that GaMD surpasses WE in getting the free-energy
landscape, we show the free-energy landscapes of bovine
pancreatic trypsin inhibitor (BPTI) in the explicit solvent
obtained from the two methods. The three systems are
illustrated in Figure 1a−c. Amber ff14SB force field parame-
ters91 were used for all three systems. Simulations were run
under the canonical ensemble with the temperature T set to 300
K using the Langevin thermostat with friction coefficient γ = 1.0
ps−1 for all three systems.
Three simulations were run for each system (alanine

dipeptide and chignolin) using GaMD−WE and WE, and the
average of the three is shown as the final result. The simulations
were run until the rate constants had leveled off and remained
consistent. Error bars for WE and GaMD−WE rate constants
represent 95% confidence intervals (i.e., × σ1.96

3
where σ

denotes standard deviation). Each point in theWE and GaMD−
WE rate constant graphs was calculated cumulatively in 50
iteration blocks.
3.1. Alanine Dipeptide. Alanine dipeptide is a 22-atom

system that is commonly used as a test system for new methods.
Initial structure was obtained from https://markovmodel.
github.io/mdshare/ALA2/. TIP3P water model92 was used to
solvate the system explicitly. For GaMD−WE, GaMD was run
for 50 ns and WE was run for 11.95 μs, so that the total
simulation time amounted to 12 μs. The total simulation time
for conventional WE was also 12 μs (three independent 4 μs
runs). Resampling time τ for WE was set to 10 ps, equal to
GaMD’s sampling frequency. The target number of walkers per
bin nw was set to 4. CVs were set to be the dihedral angles, ϕ and
ψ. Bins were evenly spaced in intervals of 10° for both ϕ and ψ
(ranging from −180 to 180°).
First, we show that GaMD covers the free-energy landscape

more than brute force simulation and WE within the same
simulation time. Figure 2a−c shows the average free-energy
landscape (−kBT ln P, where P denotes probability) of alanine
dipeptide after 50 ns of brute force simulation, GaMD, and WE,
respectively. The lowest energy state was set to be zero for each
of the free-energy landscapes. In particular, the GaMD run with
the upper bound of the dihedral boost potential yielded the
maximum number of initial structures on average as compared
to the other five GaMD potential settings (see the Supporting
Information). Cumulant expansion to the second order was used
for GaMD reweighting. As seen in Figure 2, GaMD covered
most of the metastable regions that includes PII, the rest of the β-
sheet region, and the right-handed α-helix region αR on the left
side compared to brute force simulation and WE within 50 ns of
the simulation time. This shows that it can be more beneficial to
useGaMD instead of brute force simulation orWE to sample the

free-energy landscape, even for this simple system. Figure 2d,e
shows that the free-energy landscapes are comparable after 12 μs
of brute force simulation and WE, respectively.
Second, we show that GaMD−WE can converge to the

correct rate constants faster and more accurately than WE. In
particular, rate constants between the three regions of interest
shown in Figure 2e were measured over simulation time. αR
region was defined to be −120° ≤ ϕ ≤ 0°,−100° ≤ ψ≤ 50°, PII
region was defined to be−120°≤ ϕ≤ 0°, 100°≤ ψ≤ 180°, and
αL region was defined to be 0° ≤ ϕ ≤ 120°, −50° ≤ ψ ≤ 100°.
Initial structures for the three GaMD−WE runs were from one
of the three GaMD runs with an upper bound of dihedral boost
potential that yielded the largest number of initial structures.WE
and brute force simulations used the same initial structure as the
GaMD runs. In addition, since GaMD covered a wider free-
energy landscape within 50 ns, another set of GaMD−WE
simulations was run with equal weights. Although reweighting
would give more accurate weights for each region, we wanted to
investigate whether there will be any improvements in obtaining
kinetics solely from covering more of the free-energy landscape
with GaMD versus WE. Figure 3 shows the evolution of rate
constants over aggregate simulation time, and Table 1
summarizes the final rate constants for brute force, WE, and
GaMD−WE simulations after 12 μs of simulation time.
Reference brute force simulation values were obtained from
averaging all first passage times from three independent 4 μs
runs and performing Bayesian bootstrapping for 95% confidence
intervals.88 The first 200 ns of simulation time was cut off in the
rate constant calculation to eliminate the initial structure bias for
brute force, WE, and GaMD−WE simulations.
Figure 3a,b shows that the convergence is comparable

between WE and GaMD−WE for the rate constants between
the two central metastable states αR and PII since both methods
covered both regions well. However, GaMD−WE under-
estimated both rate constants (see Table 1), whichWE obtained
more accurately. This might be due to GaMD−WEhaving lower
weights than actual for the initial αR and PII structures, which
would slow down the rate of convergence for GaMD−WE. The
GaMD−WE simulations with equal weights, on the other hand,
had larger error bars than regular GaMD−WE and performed
similarly to GaMD−WE.
For the rate constants that involved the higher-energy region

αL, however, GaMD−WE performed better than WE. Figure
3c,e highlights that GaMD−WE having the rate constants go
from αL to either primary metastable state αR or PII converge
faster with smaller error bars (see Table 1) compared to WE.
GaMD−WE simulations with equal weights, on the other hand,
did not perform better than either WE or GaMD−WE. As for
the reverse rate constants that go from either primary metastable
state αR or PII to αL, GaMD−WE and WE have comparable

Table 1. Alanine Dipeptide Rate Constants (in ns−1) after 12 μs of Simulation Timea

brute force WE GaMD−WE GaMD−WE with equal weights

αR → PII 6.81, [6.71, 6.90] 6.79 ± 0.052 6.54 ± 0.088 6.47 ± 0.12
PII → αR 2.97, [2.92, 3.02] 2.96 ± 0.055 2.88 ± 0.035 2.88 ± 0.040
αL → αR 0.30, [0.25, 0.36] 0.38 ± 0.25 0.34 ± 0.087 0.23 ± 0.14
αR → αL 0.0099, [0.0083, 0.012] 0.0083 ± 0.0011 0.0081 ± 0.0021 0.0092 ± 0.0017
αL → PII 0.33, [0.27, 0.40] 0.32 ± 0.020 0.33 ± 0.012 0.31 ± 0.019
PII → αL 0.0099, [0.0083, 0.012] 0.0085 ± 0.0014 0.0082 ± 0.0020 0.0090 ± 0.0018

aIn the brute force simulation column, the first value indicates the average rate constant value, and the second value indicates the 95% confidence
interval calculated from Bayesian bootstrapping. For WE and GaMD−WE, the error bars represent 95% confidence intervals calculated from the
standard deviation of three independent runs.
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performances, with GaMD−WE slightly underestimating both
rate constants as seen from Figure 3d,f and Table 1. GaMD−WE
simulations with equal weights performedmarginally better than
GaMD−WE by underestimating the rate constants lesser. This

might be due to having higher weights for the regions of interest
than GaMD−WE.
These results indicate that GaMD−WE can obtain kinetics

involving higher-energy regions like αL faster and more

Figure 4. Average free-energy landscape (−kBT ln P, where P denotes probability) of chignolin after (a) 500 ns of brute force simulation, (b) 500 ns of
GaMD (with the upper bound of the dihedral boost potential), and (c) 500 ns of WE (d,e) (or (f)) show the average free-energy landscape obtained
after 40 μs of brute force simulation andWE (after cutting out the first 2 μs of simulation time to eliminate the initial structure bias), respectively. (e,f)
show the regions of interest marked. The lowest energy state was set to be zero for each free-energy landscape.
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accurately than WE alone. In contrast, WE performs as well as
GaMD−WE in getting kinetics involving central metastable
states, which both methods can sample sufficiently well. In
addition, GaMD−WE needs reweighting to have more accurate
weights and have an advantage over WE, that is, GaMD−WE
does not necessarily have an advantage over WE from solely
covering more of the free-energy landscape within the same
simulation time. However, this might not be the case if GaMD
had covered a region with a higher energy barrier that is difficult
for conventional WE to sample quickly, so this hypothesis needs
to be tested on more complex systems in the future.
3.2. Chignolin. To investigate whether GaMD−WE will be

significantly more effective than WE for more complex systems,
we tested the twomethods on chignolin, a 138-atom systemwith
10 residues (PDB: 1UAO). The modified generalized Born
implicit model with the model II radii93 was used to solvate the
system implicitly. For GaMD−WE, GaMD was run for 500 ns,
and WE was run for 39.5 μs, so that the total simulation time
amounted to 40 μs. The total simulation time for conventional
WE was also 40 μs (five independent 8 μs runs). Resampling
time τ for WE was set to 20 ps, equal to GaMD’s sampling
frequency and same as in ref 88, which had a chignolin example.
Target number of walkers per bin nw was set to 4. CVs were set to
be the mass-weighted root-mean-square-deviation (RMSD) of
Cα atoms from the initial folded state (PDB: 1UAO) and the
mass-weighted radius of gyration (Rg) of Cα atoms. Bins were
evenly spaced in intervals of 0.2 Å for both RMSD and Rg
(ranging from 0 to 8 Å).
Figure 4a−c shows the average free-energy landscape (−kBT

ln P, where P denotes probability) of chignolin after 500 ns of
brute force simulation (three out of five simulations), GaMD,
and WE, respectively. The lowest energy state was set to be zero
for each free-energy landscape. In particular, the GaMD run with
the upper bound of the dihedral boost potential yielded the
maximum number of initial structures on average as compared
to the other five GaMD potential settings (see Supporting
Information). Cumulant expansion to the second order was used
for GaMD reweighting. Although GaMD and WE have
comparable free-energy landscape coverage as seen in Figure
4b,c, GaMD has probabilities closer to actual values due to
reweighting as seen in Figure 4d,e (or 4f), which show that the
free-energy landscapes are comparable after 40 μs of brute force

simulation and WE, respectively. In chignolin’s case, however,
brute force simulation had the most coverage of the free-energy
landscape out of the three cases. It is also a common practice to
run a short brute force simulation to sample the free-energy
landscape and run WE using the sampled states. Hence, using
either brute force simulation or GaMD would have been more
beneficial than WE to initially sample the free-energy landscape
in chignolin’s case.
We also show that GaMD−WE can converge to the correct

rate constants faster andmore accurately thanWE, more notably
than in the alanine dipeptide case. Specifically, the rate constants
between the four regions of interest shown in Figure 4e,f were
measured over the simulation time. The folded region was
defined to be 0.0 Å ≤ RMSD ≤ 1.0 Å, the unfolded region was
defined to be 4.0 Å ≤ RMSD, the intermediate I region was
defined to be 3.5 Å≤RMSD≤ 4.5 Å, 4.5 Å≤Rg≤ 6.5 Å, and the
intermediate II region was defined to be 6.0 Å≤ RMSD≤ 7.0 Å,
7.0 Å ≤ Rg ≤ 8.0 Å. Initial structures for the three GaMD−WE
runs were from one of the three GaMD runs with an upper
bound of the dihedral boost potential that yielded the largest
number of initial structures. WE and brute force simulations
used the same initial structure as the GaMD runs. Figures 5 and
6 show the evolution of rate constants over aggregate simulation
time, and Table 2 summarizes the final rate constants for brute
force, WE, and GaMD−WE simulations after 40 μs of
simulation time. The reference brute force simulation values
were obtained from averaging all first passage times from five
independent 8 μs runs and performing Bayesian bootstrapping
for 95% confidence intervals.88 The first 2 μs of simulation time
was cut off in the rate constant calculation to eliminate the initial
structure bias for brute force, WE, and GaMD−WE simulations.
Figure 5a,b shows that GaMD−WE is faster than WE at

converging to the reference rate constants between the folded
and unfolded regions. GaMD−WE is significantly better at
obtaining the rate constants from unfolded to folded since
GaMD−WE had closer to actual probabilities for the unfolded
region with reweighting. Without reweighting, WE takes a
significantly longer time to converge to the reference rate
constants. Figure 6a−d also shows similar results that highlight
GaMD−WE converging faster to the reference rate constants,
especially for rate constants that go from either intermediate I or
II region to the folded region. Performance for GaMD−WE is

Figure 5. Evolution of rate constants over aggregate simulation time forWE (in red) and GaMD−WE (in blue). The reference brute force values are in
black. (a,b) show the rate constants between the folded region and the unfolded region.
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only slightly better than WE in obtaining the rate constants
between the intermediate I region and the intermediate II
region; However, as seen in Figure 6e,f, the two regions are close
to each other, making sampling between these two regions and
converging to the actual rate constants easier than the other
cases. Finally, Table 2 indicates that the only rate constant that
WE had within the reference confidence interval was for the

folded→ intermediate II rate constant. In contrast, the GaMD−
WE had all of the rate constants fall within the confidence
intervals except for the intermediate I → intermediate II rate
constant. Error bars for GaMD−WE were lower than WE for all
rate constants except for the folded → unfolded, unfolded →
folded, and folded→ intermediate I rate constants. These results
indicate that GaMD−WE’s performance in obtaining kinetics is

Figure 6. Evolution of rate constants over aggregate simulation time forWE (in red) and GaMD−WE (in blue). The reference brute force values are in
black. (a,b) show the rate constants between the folded region and the intermediate I region. (c,d) show the rate constants between the folded region
and the intermediate II region. (e,f) show the rate constants between the intermediate I region and the intermediate II region.
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significantly better than conventional WE for more complex
systems than alanine dipeptide. Nonetheless, as previously
mentioned, the brute force simulation had more coverage of the
free-energy landscape than GaMD and had close to true
probabilities. Hence, it is plausible that the common practice of
runningWE, that is, run a short brute force simulation to initially
sample the free-energy landscape before running WE, would

have been as good or better than GaMD−WE in obtaining the
rate constants in chignolin’s case.

3.3. BPTI. As a final test, we ran a brute force simulation,
GaMD, and WE of BPTI, an 892-atom system with 58 residues
(PDB: 5PTI). This was to test whether GaMD will be more
effective than brute force simulation and WE at covering the
free-energy landscape of a bigger protein system than alanine
dipeptide or chignolin. TIP4P-Ew water model94 was used to

Table 2. Chignolin Rate Constants after 40 μs of Simulation Timea

brute force [ns−1] WE [ns−1] GaMD−WE [ns−1]

folded → unfolded 1.25, [1.17, 1.33] 1.16 ± 0.056 1.26 ± 0.067
unfolded → folded 0.026, [0.024, 0.028] 0.037 ± 0.0049 0.027 ± 0.0049
folded → intermediate I 1.41, [1.32, 1.50] 1.26 ± 0.046 1.46 ± 0.089
tntermediate I → folded 0.028, [0.026, 0.031] 0.041 ± 0.0056 0.029 ± 0.0045
folded → intermediate II 0.42, [0.40, 0.45] 0.44 ± 0.040 0.40 ± 0.020
intermediate II → folded 0.020, [0.019, 0.022] 0.024 ± 0.0039 0.021 ± 0.0019
intermediate I → intermediate II 1.15, [1.13, 1.17] 1.19 ± 0.037 1.20 ± 0.024
intermediate II → intermediate I 4.52, [4.46, 4.58] 4.67 ± 0.19 4.52 ± 0.17

aIn the brute force simulation column, the first value indicates the average rate constant value, and the second value indicates the 95% confidence
interval calculated from Bayesian bootstrapping. For WE and GaMD−WE, the error bars represent 95% confidence intervals calculated from the
standard deviation of three independent runs.

Figure 7. Free-energy landscape (−kBT ln P, where P denotes probability) of BPTI after (a) one 500 ns brute force simulation run, (b) one 500 ns run
of GaMD (with the upper bound of dual boost potential) with metastable states of interest M, mC14, and mC38 marked, (c) one 500 ns run of WE, and
(d) extending WE run for 2 μs (total simulation time: 2.5 μs), respectively. The lowest energy state was set to be zero for each of the free-energy
landscapes.
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solvate the system explicitly. The total simulation time for all
three simulations was 500 ns. Resampling time τ for WE was set
to 40 ps since BPTI is a bigger system than chignolin, and the
resampling time needs to be long enough to cross over to the
next bin. Simulation points were sampled every 2 ps to match
GaMD’s sampling frequency. Target number of walkers per bins
nw was set to 4. CVs were set to be the dihedral angles χ1 − C14
and χ1−C38 associated with the disulfide bond formed between
cysteine 14 and cysteine 38.95,96 Bins were evenly spaced in
intervals of 10° for both (ranging from −180 to 180°).
Figure 7a−c shows the free-energy landscape (−kBT ln P,

where P denotes probability) of BPTI after one 500 ns run of
brute force simulation, GaMD, andWE, respectively. The lowest
energy state was set to be zero for each of the free-energy
landscapes. In particular, the GaMD run with the upper bound
of the dual boost potential yielded the maximum number of
initial structures on average as compared to the other five GaMD
potential settings (see Supporting Information). Maclaurin
expansion to the 10th order was used for GaMD reweighting
since using cumulant expansion to the second order is limited for
small proteins with 40 residues or less.17 Figure 7b shows a free-
energy landscape similar to the one obtained from accelerated
molecular dynamics (aMD), which was also obtained using a
dual boost potential and Maclaurin expansion to the 10th order
for reweighting.96 Slight differences between the two free-energy
landscapes may be from using different force field parameters:
aMD used the modified Amber ff99SB-ILDN force field,97,98

which removed modifications to leucine, aspartic acid, and
asparagine to mimic the Anton simulation of BPTI,99 and
GaMD used the Amber ff14SB force field.91

Metastable states of interest, including the major state M and
two minor or excited states mC14 and mC38,

100 are marked in
Figure 7a. M region was defined to be−120° < χ1−C14 < 0°, 0°
< χ1−C38 < 120°, 0° < χ3 < 180°, mC14 was defined to be 0° < χ1
−C14 < 120°, 0° < χ1−C38 < 120°,−180° < χ3 < 0°, and mC38
was defined to be −120° < χ1 − C14 < 0°, −120° < χ1 − C38 <
0°,−180° < χ3 < 0° as in the BPTI aMD refs 95 and 96 Dihedral
angle χ3 is associated with the disulfide bond formed between
cysteine 14 and cysteine 38. It is clear that GaMD is more
effective at exploring other metastable states present in BPTI
including mC14 as compared to brute force simulation or WE.
However, note that the other five GaMD runs yielded similar
results as brute force simulation or WE (see the Supporting
Information), and only the upper bound of the dual boost
potential was able to explore the various metastable states. In
addition, WE is better than the brute force simulation at
sampling metastable states. However, even after extending the
WE simulation for 2 μs (total simulation time: 2.5 μs),WE is still
not able to sample mC14 as seen in Figure 7d. These results are
similar to those in ref 96, which highlighted the fact that a 500 ns
aMD simulation of BPTI was able to sample important
metastable states and as much as a 1 ms brute force simulation
of BPTI from Anton. This highlights the power of GaMD being
able to sample more of the configuration space thanWE. GaMD
can sample orthogonal modes to the chosen CVs χ1 − C14 and
χ1 − C38 since it is a CV-free enhanced sampling method. In
contrast, WE mainly samples along the chosen CVs and can
encounter difficulties in the sampling regions when there are
orthogonal modes present to the chosen CVs. Although rate
constants between these metastable states were not measured, it
is expected that GaMD−WE will sample them significantly
faster than conventional WE.

4. DISCUSSION

Three examples mentioned in the previous sections highlight
how GaMD−WE can be more powerful than either GaMD or
WE by itself. On the other hand, this hybrid method also reveals
both methods’ advantages and disadvantages. GaMD is more
effective at sampling the configuration space thanWE by being a
CV-free method. By adding boost potentials to “fill” the energy
wells in a CV-free manner, GaMD can sample the configuration
space more evenly across different modes in the system. On the
other hand, WE is mainly limited to efficiently sampling along
the chosen CVs. This is not problematic if the chosen CVs
sufficiently describe the dynamics of the system, but in most
cases, it is difficult to know the best CVs a priori. In such cases,
WE (and other enhanced sampling methods that need CVs a
priori) could miss sampling orthogonal modes and be slow at
sampling the configuration space. For alanine dipeptide and
chignolin, the chosen CVs have been commonly used in existing
literature.17,59,88 They are small enough systems for brute force
simulation, GaMD, and WE to sufficiently sample well.
However, for BPTI, the dihedral angles χ1 − C14 and χ1 −
C38 are not commonly used CVs and have shown to be
insufficient for WE to sample as effectively as GaMD. BPTI is
also amuch bigger system than alanine dipeptide or chignolin. In
this case, principal component analysis (PCA) vectors have been
commonly used instead as CVs for BPTI.96,99,101

However, GaMD’s conventional reweighting method, which
is used in GaMD−WE, is reliable for small systems up to 100
residues since the energetic noise becomes too high for accurate
reweighting for larger systems.17 A longer simulation or many
simulation frames for each conformation would be necessary for
larger systems to get good statistics and low error for
reweighting. Hence, reweighting has been done for each
structural cluster with many simulation frames, instead of
individual frames, for larger systems like G-protein-coupled
receptors protein complexes.102 We plan to implement this for
larger systems in our next installment of GaMD−WE.
Although WE could use PCA vectors as CVs in theory, prior

brute force simulation data will be needed to accurately calculate
PCA vectors, time-structure-based independent component
analysis vectors, and other dimensionality reduction vectors to
use them as CVs and describe the system.103,104 Nonetheless,
WE can have nondifferentiable CVs such as the number of
hydrogen bonds, which can be helpful for many systems. In
contrast, other methods such as metadynamics and ABF need
differentiable CVs. Moreover, WE does not add any statistical
bias to the system and is exact regardless of the parameters,105 so
it can reliably obtain the actual kinetics of the system. Since a
long simulation is typically needed to get reasonable estimates of
the kinetics, researchers have recently developed methods for
WE to estimate the actual kinetics faster.60,106,107 If GaMD−WE
is combined with these current methods, more improvements
will be seen in obtaining thermodynamic and kinetic properties.

5. CONCLUSIONS

We have combined two well-established enhanced sampling
methods, GaMD andWE, into a hybrid method GaMD−WE to
create a more powerful enhanced sampling method for MD
simulations. GaMD is used to sample the free-energy landscape
initially, and WE is used to further sample the free-energy
landscape and ascertain rate constants between two states of
interest in the system of interest. We have shown how the hybrid
method performs better than conventional WE in sampling
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thermodynamic and kinetic properties for two systems, and its
performance significantly improves as the system size grows. We
have also noted that running GaMD initially before WE will be
beneficial for BPTI due to its greater coverage of the free-energy
landscape. For future directions, we plan to fully integrate the
hybrid method with a WE simulation toolkit such as WESTPA
and possibly combine it with other WE enhancing algorithms to
create state-of-the-art enhanced sampling methods. The
GaMD−WE package is available at https://github.com/
anandojha/gamd_we, and the documentation is available at
https://gamd-we.readthedocs.io/en/latest/.
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