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Resolving continuous conformational heterogeneity in single-particle cryo-

electron microscopy (cryo-EM) is a field in which new methods are now

emerging regularly. Methods range from traditional statistical techniques to

state-of-the-art neural network approaches. Such ongoing efforts continue to

enhance the ability to explore and understand the continuous conformational

variations in cryo-EM data. One of the first methods was the manifold

embedding approach or ManifoldEM. However, comparing it with more recent

methods has been challenging due to software availability and usability issues. In

this work, we introduce a modern Python implementation that is user-friendly,

orders of magnitude faster than its previous versions and designed with a

developer-ready environment. This implementation allows a more thorough

evaluation of the strengths and limitations of methods addressing continuous

conformational heterogeneity in cryo-EM, paving the way for further commu-

nity-driven improvements.

1. Introduction

The field of obtaining information about continuous confor-

mational heterogeneity from cryo-electron microscopy (cryo-

EM) data sets is rapidly growing. Early efforts with traditional

statistical methods such as principal component analysis

(PCA; van Heel & Frank, 1981; Stewart, 1990) and maximum-

likelihood estimation (MLE; Sigworth, 1998; Scheres & Chen,

2012) enabled the parsing of discrete structural states in cryo-

EM data, providing initial insights into structural flexibility.

However, their reliance on linearity and discrete-state

assumptions limited their ability to capture smooth, contin-

uous changes in structure, making them less effective for

systems with complex conformational dynamics. Subsequent

advancements saw the adaptation of advanced machine-

learning methods, particularly variational autoencoders

(VAEs; Kingma & Welling, 2019) and generative adversarial

networks (GANs; Goodfellow et al., 2020), which introduced

nonlinear dimensionality-reduction approaches for cryo-EM

data analysis. VAE-based approaches (Zhong et al., 2021;

Punjani & Fleet, 2021; Tang, Zhong et al., 2023) introduced a

probabilistic framework capable of modeling complex struc-

tural variability and capturing a continuum of conformational

states. Such frameworks enable precise mapping of confor-

mational landscapes, allowing the identification of inter-

mediate states and transitions that extend beyond traditional,

discrete structural models. cryoDRGN employs VAEs to
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capture continuous 3D variability in cryo-EM images without

requiring manual intervention or pre-specified states,

revealing new structural states and large-scale motions in

systems such as the ribosome and spliceosome (Zhong et al.,

2021). cryoSPARC (Punjani et al., 2017) applies stochastic

gradient descent (SGD) and branch-and-bound maximum-

likelihood optimization, accelerating significant steps in

cryo-EM structure determination. Incorporating Bayesian

marginalization with SGD allows automated, ab initio 3D

classification and facilitates the unbiased exploration of

structural states. Such methods exemplify recent advance-

ments in deep learning and hardware acceleration, which

allow the efficient processing of large cryo-EM data sets and

the reconstruction of subtle structural variations and high-

resolution conformational mapping. Further advances have

also recently been made on this problem using a more classical

approach with the RECOVAR method, which has seen

surprising success analyzing conformational heterogeneity in

cryo-EM by regularized covariance estimation and kernel

regression (Gilles & Singer, 2024).

One pioneering approach for analyzing conformational

heterogeneity is the manifold embedding method, or Mani-

foldEM, originally developed by Abbas Ourmazd, Peter

Schwander and Joachim Frank (Dashti et al., 2014; Schwander

et al., 2014). Originally implemented as MATLAB routines,

ManifoldEM represents one of the first comprehensive

frameworks designed to capture continuous structural varia-

bility in single-particle cryo-EM and X-ray free-electron laser

(XFEL) data. Since its inception, ManifoldEM has evolved

from a proof of concept to a multi-step protocol. However,

comparing it with more recent methods has been challenging

because of software availability and usability.

The ManifoldEM method has been applied with great

success in single-particle analysis in cryo-EM for a range of

biomolecular systems, such as an apo ribosome data set

(Dashti et al., 2014), the ryanodine receptor (Dashti et al.,

2020), the SARS-CoV-2 spike protein (Sztain et al., 2021), and

even to show that annealing synchronizes the 70S ribosome

conformation (Chu et al., 2022). A distinguishing feature of

this method is its initial focus on dimensionality reduction in

the conformational space of the biomolecule within 2D

projection directions. The analysis within these 2D projection

directions follows a systematic progression, beginning with

Euclidean distance calculations between images to quantify

similarity, followed by diffusion mapping (Coifman et al.,

2005) and nonlinear Laplacian spectral analysis (NLSA;

Giannakis & Majda, 2012) to transform these patterns into an

interpretable conformational space. Recent work has shed

light on the advantages and drawbacks of the NLSA method

within the context of ManifoldEM, including a refined free

energy scheme, ESPER, for when it is needed (Seitz et al.,

2022, 2023). Another recent advance relates to transitioning

from analyzing individual projection directions (PDs) to

covering the full orientation space, which was originally a

manual, ad hoc procedure. This process can now be stream-

lined by incorporating automated optical flow belief propa-

gation (Maji et al., 2020), providing a structured framework for

combining projections. Once belief-propagation decisions are

finalized, a final step merges the manifold analyses from all

PDs to construct a probability distribution of conformational

states and corresponding trajectories of 3D volumes within

this conformational space.

The current work presents a step-by-step breakdown of the

ManifoldEM algorithm along with a description of the updates

and speed-ups of the modern Python implementation. Various

parameter choices for optimal performance are described,

with example data sets for concrete illustrations of the opti-

mization process. These examples include choices for setting

optimal aperture parameters, thresholding to filter projection

directions, belief-propagation settings for accurate alignment

across projection directions and methods for estimating the

final energy landscape and reconstructing related 3D volumes.

While many of these decisions are automated in this newest

version, users can access the relevant parameters if manual

adjustments are needed. Examples of real and synthetic cryo-

EM data sets are also provided to demonstrate the method

and practical considerations when using it.

2. Workflow

As with most other tools for conformational heterogeneity in

single-particle cryo-EM, ManifoldEM requires input files as

produced from traditional 3D refinement algorithms, such as

are commonly used in RELION (Scheres, 2012) or cryo-

SPARC (Punjani et al., 2017). With the extracted particles in a

single image stack and an alignment file with Euler angles and

defocus estimates for all particles, the user can then carry out

the steps required to perform the ManifoldEM analysis with

the software presented here. The following sections provide an

overview of the different steps in the ManifoldEM workflow,

with an overview given in Fig. 1. These steps encompass (i)

initialization, (ii) distance calculation to assess the structural

similarities between particle images, (iii) manifold analysis to

capture the intrinsic geometric structure of the data set, (iv)

localized conformational mode analysis to facilitate dimen-

sionality reduction, (v) optical flow to estimate the directional

conformational transitions, (vi) probability distribution

generation, and (vii) 3D volume reconstruction.

This modern Python implementation of ManifoldEM now

features a command-line interface (CLI) called manifold-

cli, which allows users to run the entire ManifoldEM pipe-

line directly from the command line, offering substantial

advantages over the graphical user interface (GUI).

manifold-cli enables the efficient handling of large-scale

cryo-EM data sets and simplifies complex computations that

would be cumbersome in a GUI. Each step in the workflow,

such as project setup, noise reduction, distance calculation,

manifold embedding and probability distribution estimation,

can be executed independently, giving fine-grained control

over the entire process. This CLI is particularly useful for large

data sets, offering faster, scriptable execution than GUIs. Both

the GUI and the CLI support parallel processing, enabling users

to allocate multiple CPU cores and speeding up tasks signifi-

cantly, which is critical when working on high-performance
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computing (HPC) clusters. The CLI also enables automation,

allowing users to integrate ManifoldEM commands into

custom workflows and easily repeat analyses across multiple

data sets without reconfiguration. Furthermore, this new

Python implementation is more developer-friendly, allowing

advanced users to run relevant methods outside the GUI or

CLI, thus making it easier for new features and algorithms to

be added on top of the current implementation of this algo-

rithm.

The following sections describe the step-by-step process

in the ManifoldEM workflow, with the manifold-cli

accompanying each section to facilitate the execution of

specific steps.

2.1. Data sets

2.1.1. Ryanodine receptor 1

Ryanodine receptor 1 (RyR1) is a calcium-release channel

that is crucial for muscle contraction, mediating Ca2+ flow

from the sarcoplasmic reticulum to the cytoplasm (Van

Petegem, 2012; Ogawa, 1994). Known for its complex gating,

the conformational states of RyR1 are modulated by ligands

such as ATP, caffeine and calcium, making it an ideal system

for studying conformational heterogeneity via cryo-EM

(McPherson et al., 1991; Kermode et al., 1998; Dashti et al.,

2020). The RyR1 data set is featured in this study for two

primary reasons. First, it demonstrates the ability of Mani-

foldEM to process large, dynamic macromolecular assemblies,

enabling straightforward analysis of conformational states

under various physiological conditions. Second, the ligand-

modulated gating of the receptor displays the complex struc-

tural transitions that ManifoldEM can capture, revealing

intermediate states essential for understanding the regulation

and role of the channel in muscle function.

2.1.2. Thyroglobulin

The thyroglobulin protein, which is essential in thyroid

hormone synthesis, serves as a reservoir for intraglandular

iodine and plays a major role in metabolism, development and

growth (Citterio et al., 2019; Cody, 1984). A synthetic cryo-EM

thyroglobulin data set (Astore et al., 2023) was generated with

conformational states derived from molecular dynamics (MD)

simulations and images created using cisTEM (Grant et al.,

2018).
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Figure 1
Schematic showing the ManifoldEM workflow.



2.2. Initialization

To initialize ManifoldEM, three distinct files are required:

a single-particle stack (in .mrcs format), the relevant align-

ment file (in .star format) and a consensus volume (in

.mrc format). This last file is strictly used for visualization

purposes and is not used by the analysis method itself. While

the input format for the alignment file is the RELION stan-

dard .star file, containing metadata about the image stack,

including Euler angles, defocus values and particle X and Y

shifts. Also provided is a utility to convert cryoSPARC output

files into this format for convenience.

2.3. Preprocessing and distance calculation

Once a project is initialized, ManifoldEM starts with several

preprocessing steps. The images are first sorted into uniform

bins over the 2-sphere, a process that is determined by the

input parameters aperture, object diameter and resolution

provided by the user. This sorting determines the projection

directions (PDs) within which most downstream calculations

are performed. Once these PDs have been determined, the

first step of ManifoldEM is performed: a nearest-neighbor

search leading to the distance calculation that employs a

defocus-invariant kernel. Each of these steps is detailed below.

2.3.1. Uniform distribution of projection directions over the

2-sphere (S2)

In single-particle cryo-EM, three-dimensional structures of

molecules are reconstructed from numerous 2D projection

images taken at various orientations, where each image

represents a unique view of the molecule corresponding to a

specific direction in 3D space. In ManifoldEM, images are

grouped into projection directions (PDs) aligned within a

narrow range of orientations, capturing structural hetero-

geneity while maintaining consistency and sensitivity to

conformational changes. ManifoldEM analyzes the images

within each PD, revealing the conformational state of the

system along a specific projection direction, enabling a

detailed analysis of dynamic changes within the 3D structure.

ManifoldEM then applies thresholding to retain only well

sampled PDs and eliminate low-occupancy PDs to reduce

noise. Pruning low-occupancy PDs in diffusion mapping is an

essential step to reduce noise and improve the stability of the

analysis. Low-occupancy PDs often correspond to sparsely

populated and under-sampled regions of the conformational

space, which may amplify noise and lead to unreliable mani-

fold embeddings. By pruning such PDs, the workflow focuses

on well-sampled regions of the data set, ensuring that the

diffusion map accurately represents the dominant conforma-

tional heterogeneity. However, an important consideration is

whether low-occupancy PDs, while not capturing distinct

conformations, could contribute to volume reconstruction by

supporting the overall resolution. This remains an active

research area of interest. To reconstruct a particle of diameter

D at a resolution d, the angular sampling interval � should

not exceed d/D. This follows from the Crowther criterion

(Crowther, 1970), which determines the number of PDs

needed for reconstruction by rotation about a single axis. In

ManifoldEM, the aperture index refines � by scaling as

�bin ¼
aperture index� resolution

particle diameter
: ð1Þ

Larger aperture indices increase the angular bin size, resulting

in fewer PDs, while smaller values provide finer binning with

more PDs. This process refines the selection of well-sampled

regions while ensuring sufficient coverage of conformational

space. The total number of PDs, NPD is estimated by tessel-

lating the unit sphere with bins of approximate area, �2
bin, given

by

NPD �
2�

�2
bin

: ð2Þ

In ManifoldEM PDs are defined with both a minimum and

maximum threshold for the number of particles per PD. By

default, the minimum threshold is set to 100 images, while the

upper threshold is set to 2000 images to manage computa-

tional costs and maintain analytical precision. Users can

modify these thresholds based on data-set diversity and

available computational resources, with lower thresholds

aiding in capturing finer conformational differences and

higher thresholds suited for uniform data sets.

For the RyR1 data set containing 14 491 particles, given a

resolution of 5 Å, a pixel size of 1.255 Å, an object diameter

of 360 Å, and an aperture index of 4, the Shannon angle

approximates that 2005 bins would be necessary to cover

all unique orientations at this resolution. After thresholding,

only 53 PDs met this requirement (Fig. 2a), with 1952 PDs

containing fewer than 100 particles. A higher threshold of 250

particles per PD is applied for the thyroglobulin data set

containing 674 840 particles with a resolution of 4 Å, a pixel

size of 1.073 Å, an object diameter of 350 Å, and an aperture

index of 4. Based on the Shannon angle, 2957 PDs would

ideally represent the structural variability at this resolution,

but after applying the 250-particle threshold only 1094 PDs

meet this minimum, with 1863 PDs containing fewer than 250
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particles (Fig. 2b). This reduction helps to maintain only well

sampled PDs, balancing structural detail and noise reduction.

The distribution of PDs can be understood as points on the

surface of a 2-sphere (S2), where each direction (or orienta-

tion) can be described by a quaternion, a mathematical

construct that represents 3D rotations without the ambiguities

of Euler angles or other rotation representations (Hu et al.,

2020; Hart et al., 1994). Once the projection directions have

been uniformly distributed on S2, they are mapped to one-half

of the S2 by introducing a vector vtess that defines a specific

hemisphere by selecting only those points p on S2

for which the dot product vtess · p � 0. Here, vtess acts as a

reference direction, establishing a consistent boundary that

eliminates mirrored, redundant points on the opposite side of

the sphere. The half-sphere exploits the mirror symmetry of

points on opposite sides of a sphere and increases

the number of points within a given PD. This mapping also

provides a direct relationship between the 3D orientations of

the quaternions and a 2D coordinate system, simplifying the

alignment and clustering of 2D cryo-EM images. Currently,

the effects of symmetry can be simulated in the preprocessing

of the particle stack by duplicating the particle images and

applying symmetry expansion before running the manifold

embedding pipeline. The coordinates on S2 are then used to

align and cluster similar images, allowing a more effective

classification and averaging, and enhancing the signal-to-noise

ratio in the final 3D reconstruction. Quaternions, representing

3D orientations, are mapped to S2 by

S2 ¼ 2

q1q3 � q0q2

q0q1 þ q2q3

q2
0 þ q2

3 � 0:5

0

@

1

A; ð3Þ

where q = [q0, q1, q2, q3] is the quaternion vector, q0 is the real

part and q1, q2 and q3 are the imaginary components.

2.3.2. Nearest-neighbors calculation and orientation

refinement

Once the projection directions are uniformly distributed on

S2, the nearest-neighbors search employing the ball-tree

algorithm (Liu, 2018) identifies similar orientations for the

clustering and alignment of cryo-EM images. S2 points are

then organized into discrete bins, where each bin represents a

small region on the sphere, with centers calculated from the

uniform distribution of the initial S2 projection. Let Bi

represent a bin centered at Ci with radius r. The inclusion of a

point p in the bin is determined by

kp � Cik< r; ð4Þ

where k · k denotes the Euclidean distance.

A thresholding function (equation 5) retains bins with

sufficient points, focusing on significant orientations, mini-
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Figure 2
Occupancy distribution across projection directions for the (a) RyR1 and
(b) thyroglobulin data sets. Each bin represents particle occupancy within
a specific PD, with the heatmap indicating particle density.



mizing noise and avoiding excessive computational time for

sparse bins.

Nmin � countðBiÞ � Nmax; ð5Þ

where count(Bi) denotes the number of points in bin Bi. The

parameters Nmin and Nmax define the minimum and maximum

point counts within each bin. Selecting Nmin ensures that bins

with very few points, which could represent outliers or noisy

data, are excluded. Bins with point counts exceeding Nmax are

kept, but only the first Nmax points in the bin are used in

processing to reduce the computational load.

2.3.3. Image processing and contrast transfer function (CTF)

correction

Images that had their orientations mirrored are first flipped

to reflect their mirrored status. A Gaussian filter is then

applied in the Fourier domain to enhance image features and

suppress high-frequency noise selectively. The Gaussian filter

is defined by

G ¼ exp �
logð2Þ

2

Q

f0

� �2
" #

; ð6Þ

where Q represents the spatial frequency grid and f0 controls

the range of frequencies preserved by the filter. If the user

does not provide a mask, then a circular mask with a radius of

half of the image width is applied to the image. If the user

provides a volume mask as input, it is projected into the image

plane and applied to the image, setting values outside the

mask to zero. Each image is then normalized to remove

background noise, adjusting the pixel intensity values and

ensuring uniformity by scaling based on background statistics.

The normalization is defined as

imgnorm ¼
img � �background

�background

; ð7Þ

where �background and �background are the mean and standard

deviation of the background region, respectively.

2.3.4. Distance calculation

The squared Euclidean distance between every pair of

images, i and j, in a PD is the first substantive calculation in

the ManifoldEM algorithm. The defocus-corrected distance

between any pair of images (Schwander et al., 2014) is defined

by

D2ði; jÞ ¼ kFðimgiÞ � CTFj � FðimgjÞ � CTFik
2; ð8Þ

where F(imgi) represents the Fourier transform of image i

(here already normalized, but not notated for simplicity of

presentation) and the products represent the sum of the

element-wise multiplication of each Fourier-transformed

image i with the contrast transfer function CTFj of the image j.

The CTF characterizes how the electron microscope modu-

lates the phase and amplitude of different spatial frequencies

in the image (Zhu et al., 1997; Bhamre et al., 2016), here

calculated by

CTFðkÞ ¼ sin
1

2
�Cs�

3k4 � ���fk2

� �

� � � cos
1

2
�Cs�

3k4 � ���fk2

� �� �

; ð9Þ

where Cs denotes spherical aberration, � is the electron

wavelength, �f is the defocus, k is the spatial frequency and �

represents the amplitude contrast, i.e. the proportion of phase

shift caused by scattering in the imaging process, affecting the

visibility of low-frequency components in the resulting image.

In the initial MATLAB implementation, the distance

calculation was the most time consuming step. The current

optimized distance-calculation pipeline enhances the effi-

ciency of squared Euclidean distance computations between

image pairs by incorporating defocus-invariant CTF correc-

tion directly in memory. By avoiding redundant I/O operations

and integrating the CTF correction step within the distance

calculations, the approach eliminates the previous bottlenecks

associated with disk writes. This in-memory, defocus-invariant

implementation, combined with parallelized processing of

images in bins and multiprocessing, efficiently handles large

data sets, meeting the computational demands of modern

cryo-EM analysis.

2.4. Diffusion mapping and manifold analysis

The manifold analysis protocol in the ManifoldEM frame-

work captures the intrinsic geometric structure of high-

dimensional cryo-EM data sets. From estimating the optimal

Gaussian kernel width to embedding data in a lower-dimen-

sional space, this approach provides a systematic workflow to

analyze conformational heterogeneity in cryo-EM data.

Diffusion maps (Coifman & Lafon, 2006; Lafon, 2004), which

are a core component of this protocol, capture both local and

global structural variations by constructing a weighted graph

based on local similarities with a Gaussian kernel. Key high-

lights of the manifold analysis protocol within the Mani-

foldEM framework are outlined below.

2.4.1. Weight matrix and optimal r estimation

The distance matrix D(i, j) represents pairwise distances

between projection directions, defining the local and global
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geometry of the data set. A Gaussian kernel that measures the

distance-based similarity between two points is used to

construct the weight matrix W, represented by

Wij ¼ exp �
D2

ij

2�2

� �

; ð10Þ

where Dij is the distance between the data points i and j. W is

crucial for defining the local and global geometry of the data

and is used in constructing graph-based representations of the

data set, such as in diffusion maps and spectral clustering (Ng

et al., 2001; Coifman & Lafon, 2006). Selecting an appropriate

Gaussian kernel width (�) is essential for accurately capturing
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Figure 3
2D projection images from selected projection directions (PDs) for (a) the RyR1 data set and (b) the thyroglobulin data set. Each image represents an
average from all of the images in its corresponding projection direction, labeled with the total number of contributing images, arranged from the lowest
to the highest.



the data structure. The choice of � directly influences the

sensitivity of the kernel to variations in Dij. If � is too small the

kernel becomes too localized, resulting in a sparse weight

matrix that only captures very close relationships. Conversely,

a large � makes the kernel insensitive to distance, causing it

to lose local geometric details. The optimal � is identified

through a curve-fitting method maximizing the log-determinant

of the kernel matrix, ensuring that the weight matrix, W,

captures both local and global data structures, thereby facil-

itating accurate manifold learning and representation of the

cryo-EM data. The nlsa_tune parameter, specified in the

configuration TOML file, governs the Gaussian kernel width

by scaling the variance term used in the kernel. This parameter

is optional and defaults to a value of 3 if not explicitly defined.

Smaller values of nlsa_tune broaden the kernel, empha-

sizing global patterns, while larger values focus on local rela-

tionships. Users can adjust this parameter based on the

characteristics of the data set to achieve an appropriate

balance between capturing local and global features.

To examine the structural diversity and conformation

distribution across PDs for the RyR1 and thyroglobulin data

sets, average images were generated for all PDs, ranging from

the lowest to highest occupancy. Note that average images for

each PD are not used in the algorithm itself but are useful for

the user to visualize PDs. To produce these average images, a

Wiener filter is applied to the Fourier-transformed images to

enhance signal quality and suppress noise by

WðkÞ ¼
CTFðkÞ

CTF2ðkÞ þ ð1=SNRÞ
; ð11Þ

where SNR is the signal-to-noise ratio. Lower-occupancy PDs

may exhibit higher noise levels due to limited data points,

whereas higher-occupancy PDs benefit from an improved

signal-to-noise ratio (SNR), which enhances structural clarity

and the representation of finer details. For the RyR1 data set,

circular masks (Fig. 3a) were employed that focus on central

regions and reduced edge noise, ensuring uniform processing.

The thyroglobulin data set employed adaptive masks (Fig. 3b)

that adjust to particle features, removing image pixels that do

not include the molecule. Figs. 3(a) and 3(b) show selected

averaged PD images for the RyR1 and thyroglobulin data sets,

respectively, arranged in an ascending occupancy order from

lowest to highest. Intermediate-occupancy PDs are included

to represent a range of orientations and image densities,

providing a detailed view of conformational changes and

subtle structural variations across the conformational land-

scape in each data set.

2.4.2. Laplacian matrix construction and spectral

decomposition

Once the weight matrix has been constructed, spectral

analysis can be performed. This process begins by constructing

the Laplacian matrix, L, a representation of the graph struc-

ture of the data that captures the relationships between data

points based on the weight matrix, W. The Laplacian matrix,

defined by equation (12), is central to manifold-learning

approaches, such as diffusion maps and spectral clustering, as

it encodes the connectivity and geometric structure of the data

set, enabling effective dimensionality reduction and clustering.

L ¼ D � W; ð12Þ

where D is the degree matrix, a diagonal matrix where each

diagonal entry Dii represents the sum of the weights of the

edges connected to node i (equation 13).

Dii ¼
P

j

Wij: ð13Þ

The spectral decomposition of the Laplacian matrix is defined

as

L ¼ U�UT; ð14Þ

where U is a matrix whose columns are the eigenvectors of L

and � is a diagonal matrix of the corresponding eigenvalues.

The leading eigenvectors, corresponding to the smallest non-

zero eigenvalues, represent lower-dimensional data. This

representation is then used for clustering and visualizing the

manifold structure of the cryo-EM data.

2.4.3. Manifold trimming and embedding refinement

Radius-based trimming refines the spectral embedding by

iteratively removing points beyond a specified radius (rad)

from the origin of the embedded space. Identifying and

excluding outliers or noise ensures a robust manifold repre-

sentation. An initial spectral embedding is performed using

the distance matrix, D(i, j) (equation 15).

 dist ¼  ½:; 0�
2
þ  ½:; 1�

2
þ  ½:; 2�

2
Þ

1=2
; ð15Þ

where  represents the embedding coordinates. Points with

 dist < rad are retained for further analysis. The value of rad

is set to 5 by default, but users can access and modify this

parameter if needed.

The trimmed distance matrix is recalculated for the refined

set of points. A diffusion map embedding is then performed,

optimizing the Gaussian kernel width (�) and computing the

eigenvalues (�) and eigenvectors ( ). This iterative process

continues until convergence.

2.5. Localized conformational mode analysis

The localized conformational mode-analysis step provides a

localized data-set exploration focusing on identifying domi-

nant conformational modes within each projection direction.

This step translates the manifold analysis results into inter-

pretable low-dimensional representations by constructing

neighborhood-based graphs, making it ideal for dissecting
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subtle conformational changes in specific data regimes. This

step enables a detailed exploration of the conformational

landscape by constructing a weight matrix and subsequent

spectral decomposition. Key highlights of the localized

conformational mode-analysis protocol within the Mani-

foldEM framework are outlined below.

2.5.1. Weight-matrix construction using k-nearest neighbors

(KNN)

Unlike manifold analysis, localized conformational mode

analysis employs a local k-nearest neighbors (KNN) graph,

where each point represents an embedded coordinate in the

reduced-dimensional conformational space derived from

the preceding manifold analysis. These points correspond to

localized representations of particle conformations, capturing

their structural variations within specific projection directions.

The KNN graph connects each point to its k closest neighbors

based on the Euclidean distance in the reduced-dimensional

space. k is computed internally by the ManifoldEM frame-

work but is influenced by the con_order_range para-

meter specified in the configuration file. The parameter

determines how the neighbors are grouped, and the resulting

value of k reflects the number of connected neighbors used

for analysis. Smaller values of con_order_range result in

higher connectivity (more neighbors), while larger values

reduce connectivity (fewer neighbors).

The Euclidean distance between two points xi and xj in the

data set is given by

Dðxi; xjÞ ¼ kxi � xjk: ð16Þ

For each data point xi, the k-nearest neighbors are identified

by finding the k points with the smallest Euclidean distances

to xi.

Once the nearest neighbors have been determined, edges

are formed between each point xi and its neighbors xj to form a

local connectivity network. A Gaussian kernel is then applied

to these neighbors, assigning weights, Wij, to each edge in the

local KNN graph (equation 17).

Wij ¼ exp �
Dðxi; xjÞ

2

2�2

 !

; ð17Þ

where � is the kernel width controlling the locality scale in

graph construction. This weighted KNN graph captures local

relationships and the global structure of the data, allowing

spectral decomposition and manifold embedding to represent

the high-dimensional data in lower-dimensional space more

effectively.

2.5.2. Laplacian matrix construction and eigen

decomposition

A Laplacian matrix, L, constructed from the local weight

matrix, Wij, is defined similarly as in manifold analysis

(equation 12). The eigen decomposition of the Laplacian

matrix L yields eigenvectors, U, and corresponding eigenva-

lues, � (equation 14). The eigenvectors associated with the

smallest nonzero eigenvalues are particularly important for

representing the data in a lower-dimensional space.

2.5.3. Dimensionality reduction and embedding

After eigenvalue decomposition, dimensionality reduction

is achieved by selecting eigenvectors corresponding to the

smallest nonzero eigenvalues. Let  k represent the eigen-

vectors corresponding to the smallest k nonzero eigenvalues,

 k ¼ ½ 1;  2; . . . ;  k�: ð18Þ

Once the eigenvectors  k corresponding to the smallest

nonzero eigenvalues have been identified, dimensionality

reduction is performed. These eigenvectors provide a lower-

dimensional representation of the original high-dimensional

data while retaining the essential structure of the data and

discarding noise and irrelevant variations. The data points are

then embedded into a k-dimensional space using the eigen-

vectors

yi ¼  
T
k xi; ð19Þ

where xi represents the original data points and yi are the

embedded points in the reduced-dimensional space.

2.5.4. Nonlinear Laplacian spectral analysis (NLSA)

Nonlinear Laplacian spectral analysis (NLSA; Giannakis &

Majda, 2012; Jordanger & Tjøstheim, 2022) constructs

temporal or spatial embeddings that capture the nonlinear

geometry of the data by applying nonlinear dimensionality-

reduction methods. It involves time-delayed embeddings,

identifying recurrent patterns and analyzing dynamics to

reveal complex relationships across different temporal scales,

providing a comprehensive understanding of the underlying

dynamics. In the case of time-delayed embeddings, a trajectory

matrix is created where each row represents a time-shifted

version of the original data set, allowing the method to capture

the temporal evolution of the system. This matrix is repre-

sented as

X ¼ ½x1; x2; . . . ; xT �; ð20Þ

where each column xt represents data points at time t. This

enables NLSA to identify recurrent patterns and dynamics for

detailed temporal analysis. The reduced-dimensional repre-

sentation is then analyzed to identify patterns, clusters or

anomalies, providing insights into the dynamics or structure of

the original data set.

Once the Laplacian matrix has been constructed from the

distance matrix, spectral decomposition extracts eigenvalues

and eigenfunctions that capture the primary modes of struc-
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tural variation within the data set. The first mode represents

the dominant conformational change, while subsequent modes

reveal additional significant variations. Figs. 4(a) and 4(b)

display scatter plots of the first three conformational modes

for the two leading eigenfunctions derived from projection

directions within the RyR1 and thyroglobulin data sets,

respectively. Each data set includes PDs representing the

lowest and highest image counts, highlighting how well

sampled versus sparsely sampled orientations capture the

conformational landscape. In Figs. 4(a) and 4(b), scatter plots

of mode 1 versus mode 2, mode 2 versus mode 3, and mode 1

versus mode 3 illustrate structural variation and relationships

within the latent space for the RyR1 and thyroglobulin data

sets. These plots reveal distinct patterns or clusters that

represent conformational states or transitions. High-popula-

tion PDs show smoother trajectories, reflecting robust and

statistically reliable modes, while low-population PDs may

appear fragmented due to limited sampling. In the RyR1 data

set (Fig. 4a) conformational modes derived from the leading

eigenfunctions from PDs with lower image counts (117

images) exhibit fragmented, dispersed patterns, indicative of

limited sampling that inadequately captures the structural

diversity. Conversely, plots from PDs with higher image counts

(565 images) display smoother, more continuous trajectories.

Similarly, in the thyroglobulin data set (Fig. 4b), the PD with

250 images maintains noticeable structural features, although

somewhat less defined than the PD with 994 images, which

provides well defined and smooth trajectories across modes,

highlighting structural clarity and coherence. Comparison

between the first and second eigenfunctions for each PD in

both data sets further emphasizes the variations in dominant

structural modes. Notably, the thyroglobulin data set exhibits

stability and coherence across low and high image counts,

suggesting a robust manifold construction with consistent

structural features, whereas the RyR1 manifold is more

sensitive to sampling limitations, with well defined patterns

only emerging in high-density PDs.

2.6. Belief propagation by optical flow

Once the individual manifold analyses for each projection

direction have been completed, the next task is to align
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Figure 4
Scatter plots of the first three conformational modes derived from the first two eigenfunctions for selected projection directions within (a) the RyR1 and
(b) the thyroglobulin data sets. For each data set, rows represent projection directions with different image counts (117 and 565 images for RyR1 and 250
and 994 images for thyroglobulin), displaying pairwise comparisons of the conformational modes, mode 1 versus mode 2 (left), mode 2 versus mode 3
(center), and mode 1 versus mode 3 (right), highlighting structural variation and latent space relationships in high-dimensional data.



conformational changes across PDs to construct a unified

representation of the conformational state space, enabling 3D

volume reconstruction. This alignment process, termed belief

propagation (Yedidia et al., 2000, 2003), ensures consistent

motion direction and transitions across PDs, facilitating

smooth analysis of conformational heterogeneity. The term

‘belief’ here refers to an inferred, consistent interpretation of

motion directions and magnitudes across PDs. Employing

optical flow (Otte & Nagel, 1994; Beauchemin & Barron,

1995) for tracking motion, the belief-propagation algorithm

presented in the prior work (Maji et al., 2020) iteratively aligns

the directional changes observed in each PD, ensuring that

motion patterns are consistently represented across the data

set. This approach significantly reduces manual alignment

requirements, as only a handful of nodes needs to be assigned

manually rather than each of the potentially hundreds or

thousands of individual PDs, transforming PD alignment into

an accessible process achievable within a few hours.

2.6.1. Optical flow for motion estimation

Each PD is a member of a larger cluster, for which the user

assigns an ‘anchor node’ (a reasonable default is the PD of

highest occupancy within a cluster) to define subsequent

motions within that cluster, and by extension across the data

set. To estimate molecular motion across PDs, optical flow is

computed to determine the velocity field, u(x, y), between

consecutive images. Given two images, I(x, y, t) and I(x, y, t +

�t), the optical flow is derived from the intensity-change

equation (equation 21), providing the direction and magni-

tude of molecular movements within each PD.

@I

@x
ux þ

@I

@y
uy þ

@I

@t
¼ 0: ð21Þ

2.6.2. Histogram of oriented gradients (HOG) for feature

representation

To quantify conformational shifts, histograms of oriented

gradients (HOGs; Dalal & Triggs, 2005; Tomasi, 2012) are

computed from optical flow vectors within each PD. Each PD

image is divided into cells, and the HOG features are calcu-

lated according to equation (22).

HOGðPDiÞ ¼ fhjg
M
j¼1; ð22Þ

where hj represents the histogram for the jth cell and M is the

number of cells in PDi.

2.6.3. Clustering of PDs based on motion similarity

PDs with similar motion patterns are grouped based on

HOG features, where the pairwise distance, d(PDi, PDj),

between PDs is given by equation (23). A similarity graph

is constructed, where nodes represent PDs and edges are

weighted by d(PDi, PDj). PDs with comparable motions are

clustered, leading to coordinated motion analysis within each

group.

dðPDi;PDjÞ ¼ kHOGðPDiÞ � HOGðPDjÞk: ð23Þ

2.6.4. Belief propagation across PD clusters

Belief propagation iteratively updates the conformational

state of each PD based on neighboring PDs within the cluster.

Let  i represent the conformational state of PDi. Neighboring

PDs, PDj, influence  i through the belief-propagation update

rule (equation 24), ensuring the alignment of motion direction

across all PDs achieves consistency within each cluster.

 
ðtþ1Þ
i ¼

1

Zi

P

j2neighbors

ðiÞ exp �
dðPDi;PDjÞ

�

� �

 
ðtÞ
j ; ð24Þ

where � is a smoothing parameter and

Zi ¼
P

j2neighbors

ðiÞ exp �
dðPDi;PDjÞ

�

� �

is a normalization constant.

2.6.5. Anchor-node selection and manual determination of

its ‘sense’

Within each cluster, a single anchor node, generally the PD

with the highest occupancy, is selected to define the relevant

molecular motions. This anchor node is a reference for

ensuring consistent motion sense across the entire cluster. This

selection is critical to connecting the state space among all

PDs by aligning the conformational changes represented in

the individual PD manifold analysis. As an example of

performing this process manually, the initial step involves

identifying the PD with the highest image count, observing it

and defining the motion captured in the primary mode,  1. For

instance, if the motion depicts the ‘wings’ of the system

moving from an upward to a downward position, this move-

ment should be assigned a positive ‘sense’. Following this

initial step, it is essential to ensure that motions across all

other PDs are defined consistently with this reference. For

instance, if the  1 motion represents a down-to-up movement

in a particular PD, it should be assigned a negative ‘sense’ to

align it with the reference and allow coherent analysis across

PDs. Similarly, if this motion appears in  2 instead of  1

in another PD, it is necessary to designate  2 as the anchor

node to maintain consistency. This approach ensures that

the defined motion propagates accurately into downstream

analysis.

Manual sense determination is illustrated in the optical

flow visualizations for the RyR1 and thyroglobulin data sets

(Fig. 5). For the RyR1 data set, the anchor node  2 is chosen

instead of  1, optimizing alignment with the conformational
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changes within this orientation. Sparse transitions appear in

the lower-occupancy PD (Fig. 5a), indicating limited sampling,

while the higher-occupancy PD (Fig. 5b) shows smoother,

continuous flows indicative of robust sampling. In the thyro-

globulin data set,  1 is selected as the anchor node to maintain

coherent motion analysis across the conformational landscape.

The lower-occupancy PD (Fig. 5c) displays sparse transitions,

whereas the higher-occupancy PD (Fig. 5d) reveals a contin-

uous, well defined flow, enhancing the structural clarity.

2.7. Probability distribution estimation and volume

reconstruction

Once belief propagation has been performed, the final step

is generating the probability distribution and performing

the volume reconstruction along a 1D trajectory within

this distribution. Below, the steps for this are described in

detail.

2.7.1. Parameterization and state occupancy

For each selected PD, the conformational trajectory data,

represented by the eigenvector �, are divided into N uniformly

spaced bins. Each bin corresponds to a unique NLSA-derived

conformational state, and the occupancy of each state, ns, is

determined by counting the number of snapshots that fall

within each bin. The cumulative occupancy, hun, across all PDs

is computed according to

hun ¼
Pxactive

x¼1

hx; ð25Þ
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Figure 5
Optical flow visualization for the RyR1 and thyroglobulin projection directions. (a) RyR1 PD with 117 images. (b) RyR1 PD with 565 images. (c)
Thyroglobulin PD with 250 images. (d) Thyroglobulin PD with 994 images.



where hx is the histogram of � values for the xth PD and xactive

denotes the number of active PDs.

2.7.2. Normalization of trajectory data

To maintain consistency across PDs and ensure that

conformational states are uniformly represented across the

energy landscape, each trajectory � is normalized to the range

[0, 1] (equation 26).

�0 ¼
� � minð�Þ

maxð�Þ � minð�Þ
: ð26Þ

2.7.3. Probability distribution of conformational states

With the occupancy hun calculated, the probability Ps of

each state s is given by

Ps ¼
ns

n0

; ð27Þ

where ns is the occupancy of state s and n0 is the maximum

occupancy across all states. To avoid singularities, the

normalized state occupancy, �= max(hun, 1), is used, where hun

represents the unnormalized occupancy for a given state. This

ensures that � is always at least 1, preventing issues with

logarithmic calculations and enabling robust estimation of

state probabilities across the conformational landscape.

Figs. 6(a) and 6(b) depict the probability distributions of

conformational states for RyR1 and thyroglobulin along their

respective reaction coordinates. Key conformational states are

annotated with markers at regions of high and low occupancy,

highlighting transitions between distinct states.

2.7.4. Optional: free-energy calculation

With the occupancy, hun, in hand, one can calculate the free

energy, �G, of each state by employing the Boltzmann factor.

The relative free energy, �G, of each state, s, is given by

�G

kBT
¼ � ln

ns

n0

� �

; ð28Þ

where ns is the occupancy of the current state s, n0 is the

maximum occupancy across states, kB is the Boltzmann

constant (1.987 � 10� 3 kcal mol� 1 K� 1) and T is the

temperature in kelvin. The Boltzmann factor yields a free

energy E for each state given by

E ¼ � kBT lnð�Þ; ð29Þ
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Figure 6
(a) Probability distribution of RyR1 conformations along the reaction
coordinate, representing the relative occupancy of states derived from
ManifoldEM analysis. Key states are shown in gray, with volume
renderings depicting the structural features of these states. (b) Probability
distribution of thyroglobulin conformations along the reaction coordi-
nate. Key states are marked with colored indicators: gray for low-occu-
pancy states, red and purple for frequently sampled states (local peaks in
probability) and blue for a state with intermediate occupancy. Inset
volume renderings, collapsed into a single panel for frequently sampled
states, illustrate conformational transitions inferred from the probability
landscape. Single and double arrows represent unidirectional and bidir-
ectional transitions, respectively.



where � = max(hun, 1) to avoid singularities and kBT is the

thermal energy. Note that free-energy profiles are not calcu-

lated by default, as this depends on the assumption that a

sample is representative of the equilibrium distribution at a

known temperature, the validity of which has been brought

into question (Grübmuller & Bock, 2023). However, the user

still has access to this calculation, as it can be derived from the

probability distribution with the above equation.

2.7.5. Volume reconstruction

Volume reconstruction involves generating 3D volumes

from the images corresponding to the selected points along

the 1D coordinate of the probability distribution of confor-

mational states (50 points in the case of RyR1 and thyro-

globulin). This process employs the pseudo images and pseudo

STAR files produced by ManifioldEM. Tools for volume

reconstruction are provided using the relion_recon-

struct command. However, alternative reconstruction

methods can be used, as this calculation is external to Mani-

foldEM.

3. Overview of changes

3.1. Usability improvements

ManifoldEM is now pip-installable, ensuring a smoother

setup across diverse computing environments. The addition

of manifold-cli enables direct command-line execution,

enhancing flexibility for automation and scripting beyond

GUI reliance. Configuration files are standardized in Tom’s

obvious minimal language (.toml) format, making para-

meters easily editable and accessible for both end-users and

developers. Stability improvements address frequent crashes,

particularly in handling large PD clusters, resulting in a more

stable software experience. ManifoldEM accommodates

multiple projects within a single directory, with outputs

organized systematically for straightforward data handling

and streamlined workflows. A remote visualization mode

(manifold-gui -V) allows 3D visualizations to be

disabled, conserving bandwidth, reducing system demands,

and allowing remote execution of the GUI via X-forwarding

in headless environments. Further optimizations include

enhanced plotting routines with customizable division planes

that exploit image symmetry for faster processing and tailored

visualization control.

3.2. Pipeline optimization

The adoption of Numba, a just-in-time compiler, combined

with optimized mathematical computations using NumPy, has

substantially accelerated the processing speed of the pipeline.

Optimizations to the rotate_fill routines deliver up to

a tenfold speedup in image handling, providing efficient

processing for large data sets. Replacing the histogram of

oriented gradients (HOG) function from SciPy with a custom-

built FastHOG library achieves a 100-fold performance boost,

enabling rapid image analysis across high-volume data sets.

This library is hosted on GitHub by the Flatiron Institute at

https://github.com/flatironinstitute/fasthog. The pipeline now

includes parallel processing capabilities in every computa-

tionally intensive step, allowing major steps to execute

simultaneously while reducing the overall runtime. Storage

requirements have been optimized to reduce file size and

count while minimizing I/O operations, further decreasing the

data footprint and improving speed. The image-output process

is streamlined by utilizing imageio in place of Matplotlib,

eliminating unnecessary overhead and enhancing the perfor-

mance of image generation and saving. The pipeline has been

optimized to process large-scale data sets efficiently. A single-

particle data set containing 1.3 million particles with 280� 280

pixel images was processed on AMD EPYC 9004 Series

(Genoa) processors with 96 cores, completing in approxi-

mately 4–6 h and demonstrating the capability of the pipeline

to handle modern cryo-EM data sets.

3.3. Developer-focused enhancements

Extensive code cleanup eliminated thousands of lines of

redundant code, enhancing maintainability and efficiency

for streamlined modifications. The GUI is refactored with

a modular, developer-friendly structure, facilitating easier

customization. Parameter management is now unified, with

centralized storage that removes code duplication, simplifies

data organization and improves usability. Automated help

generation for CLI commands provides current guidance and

boosts accessibility for developers. Project metadata, such as

rotation, projection directions and image indices, are now

centrally stored, enhancing organization and accessibility.

Conjugate image handling is optimized using transformation

flags and half-S2 representations, aligning directly with the

input stack and simplifying workflows. Comprehensive func-

tion documentation and added type hints increase code clarity,

supporting effective collaboration on future development.

4. Discussion and conclusions

ManifoldEM adopts a distinctive approach to cryo-EM

heterogeneity by using per-PD analysis, enabling detailed

conformational reconstruction within orientation-specific

subspaces. That is, the conformational states are recovered for

each PD, setting ManifoldEM apart from other methods.

ManifoldEM requires moderate CPU resources, achieving

high-resolution conformational insights without the extensive

GPU demands of deep learning-based tools. The employment

of NLSA with Gaussian kernel-based Laplacian matrices in

ManifoldEM enhances its ability to map conformational

heterogeneity and produce interpretable free-energy land-

scapes, which are essential for connecting structural and

energetic features. Further additions within this Python
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framework, such as the implementation of 2D landscapes,

multi-data-set analysis and support for tomography data as

inputs, are clear next steps. To facilitate all of these,

the groundwork presented here, including CLI and GUI

modes, TOML configuration and improved modularity, make

it adaptable across computing environments and support

future integration with well supported Python tools.

The versatility of ManifoldEM, especially in this developer-

friendly implementation, and its focus on per-PD analysis

make it well suited for extensions. One obvious example is

explicit integration with MD simulation. The benefits of

combining MD and ManifoldEM have been exploited in past

work on RyR1 (Dashti et al., 2020) and the SARS-CoV-2 spike

protein (Sztain et al., 2021). However, a practical integration

of the two methods for wider use to tackle biological problems

remains to be performed. A related recent advancement in

this area is the use of Bayesian ensemble reweighting to obtain

free-energy landscape estimation by reweighting MD-gener-

ated distributions to match that present in a single-particle

cryo-EM data set of the same system (Tang, Silva-Sánchez et

al., 2023). This is a compelling demonstration of the promise of

combining MD and cryo-EM to understand the conforma-

tional heterogeneity present in these experimental data sets.

However, per-particle noise and other aspects of the process

of conducting ensemble reweighting using cryo-EM particle

images suggest that a per-PD approach may be advantageous.

Furthermore, biasing MD simulations directly by the outputs

of ManifoldEM offers a powerful framework for capturing

biomolecular conformational landscapes: merging cryo-EM

data with simulation-driven kinetics and thermodynamics.

Enhanced simulation methods, such as milestoning (Ojha,

Votapka et al., 2023; Votapka et al., 2022; Ojha, Srivastava et

al., 2023) and weighted ensemble (Zuckerman & Chong, 2017;

Zwier et al., 2015; Ojha, Thakur et al., 2023) simulations for

kinetic and thermodynamic analysis, would reveal dynamic

behaviors across ManifoldEM-identified conformational

states.

Since the first application of ManifoldEM to a single-

particle cryo-EM data set (Dashti et al., 2014), many other

approaches to continuous conformational heterogeneity in

cryo-EM have been proposed (Tang, Zhong et al., 2023).

However, in recent studies using an artificial data set as a

controlled ground truth (Dsouza et al., 2023) and a well

studied experimental single-particle cryo-EM data set of

TRPV1 (Astore et al., 2024) ManifoldEM still performs on a

par with or, at times, even better than the state-of-the-art

methods such as cryoDRGN (Zhong et al., 2021). An indicator

of the growth of this field is the recent push for further

benchmarking (Joosten et al., 2024; Jeon et al., 2024) and

challenges (Astore et al., 2023) for heterogeneity in cryo-EM.

Indeed, as the frontiers of cryo-EM push into in situ and

cryo-electron tomography, as well as time-resolved cryo-EM

(Mäeots & Enchev, 2022), better methods for resolving

heterogeneity and conformational landscapes with fewer and

fewer particles will be critical to developing a mechanistic

understanding of the molecular mechanisms of the biological

world.

The ManifoldEM Python suite is an open-source repository

hosted on GitHub by the Flatiron Institute at https://

github.com/flatironinstitute/ManifoldEM.
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